
 ch 2
Computer System Operation

and Structure

By

Lecturer Ameen A.Noor

• A modern, general-purpose computer system
consists of a CPU and a number of device controllers
that are connected through a common bus that
provides access to shared memory system.

• For a computer to start running, when it is powered up or rebooted,
it needs to have an initial program to run. This initial program, or
bootstrap program, tends to be simple. Typically, it is stored in read-
only memory (ROM) such as firmware (coded instructions that are
stored permanently in read-only memory) or EEPROM within the
computer hardware. It initializes all aspects of the system, from CPU
registers to device controllers to memory contents.

• The bootstrap program must know how to load the operating system and to
start executing that system. To accomplish this goal, the bootstrap program
must locate and load into memory the operating-system kernel. The operating
system then starts executing the first process, such as "init," and waits for some
event to occur. The occurrence of an event is usually signaled by an interrupt
from either the hardware or the software. Hardware may trigger an interrupt at
any time by sending a signal to the CPU, usually by way of the system bus.
Software may trigger an interrupt by executing a special operation called a
system call.

• Booting: is the operation of bringing operating system kernel from secondary
storage and put it in main storage to execute it in CPU. There is a program
bootstrap which is performing this operation when computer is powered up or
rebooted.

• Bootstrap: is a simple initial program, it is stored in ROM such as firmware or
EEPROM(Electrically Erasable Programmable Read-Only Memory) within the
computer hardware.

1. Initialize all the aspect of the system, from CPU registers to
device controllers to memory contents.

2. Locate and load the operating system kernel into memory
then the operating system starts executing the first process,
such as “init” and waits for some event to occur.

• Types of events are either software events (system call) or
hardware events (signals from the hardware devices to the
CPU through the system bus and known as an interrupt).

• Each I/O device connected to the computer system through
its controller. A device controller maintains some local
buffer storage and a set of special-purpose registers. The
device controller is responsible for moving the data
between the peripheral devices that it controls and its local
buffer storage.

• To start an I/O operation, the CPU loads the appropriate
registers within the device controller. The device controller,
in turn, examines the contents of these registers to
determine what action to take. For example, if it finds a
read request, the controller will start the transfer of data
from the device to its local buffer. Once the transfer of data
is complete, the device controller informs the CPU that it
has finished its operation.

Interrupt: Most devices send a signal (interrupt) to the processor
when an event occurs. The operating system can respond a change in
device status by notifying processes that are waiting on such events.
Trap or Exceptions: its interrupts generated in response to errors for
example (division by zero or invalid memory access). The processor
invokes the operating system to determine how to respond
(terminate or restart).
Interrupt Vector (IV): it is a fixed locations (an array) in the low
memory area (first 100 location of RAM) of operating system when
interrupt occur the CPU stops what it is doing and transfer execution
to a fixed location (IV) contain starting address of the interrupt of the
interrupt service routine (ISR), on completion the CPU resume the
interrupted computation.
Interrupt Service Routine (ISR): is it a routine provided to be
responsible for dealing with the interrupt.

• A high-speed device, however such as a tape, disk, or communications
network-may be able to transmit information at close to memory speeds;
the CPU needs two microseconds to respond to each interrupt and
interrupts arrive every four microseconds, for example, that does not
leave much time for process execution. To solve this problem, direct
memory access (DMA) is used for high-speed I/O devices. After setting
up buffers, pointers, and counters for the I/O device, the device
controller transfers an entire block of data directly to or from its own
buffer storage to memory, with no intervention by the CPU. Only one
interrupt is generated per block, rather than the one interrupt per byte
(or word) generated for low-speed devices. The DMA controller
interrupts the CPU when the transfer has been completed.

• Computer programs must be in main memory (RAM) to be executed. Main
memory is the only large storage area that the processor can access
directly. Each word has its own address.

• Interaction is achieved through a sequence of load or store instructions to
specific memory addresses. The load instruction moves a word from main
memory to an internal register within the CPU, whereas the store
instruction moves the content of a register to main memory.

• We want the programs and data to reside in main memory permanently.

This arrangement is not possible for the following two reasons:
1. Main memory is usually too small to store all needed programs and

data permanently.
2. Main memory is a volatile storage device that loses its contents when

power is turned off or otherwise lost.
Most computer systems provide secondary storage as an extension of
main memory. The main requirement for secondary storage is that it be
able to hold large quantities of data permanently. The most common
secondary-storage device is a magnetic disk, which provides storage of
both programs and data. They are other many media such as floppy
disks, hard disks, CD-ROMs, and DVDs.

Low Capacity

High speed

High cost

• When we have single user any error occur to the system then we could
determine that this error must be caused by the user program, but when
we begin to dealing with spooling, multiprogramming, and sharing disk
to hold many users data this sharing both improved utilization and
increase problems. In multiprogramming system, where one error
program might modify the program or data of another program, or even
the resident monitor itself. MS-DOS and the Macintosh OS both allow
this kind of error.

• A properly designed operating system must ensure that an incorrect (or
malicious) program cannot cause other programs to execute incorrectly.

• Many programming errors are detected by the hardware. These errors
are normally handled by the operating system.

• To ensure proper operation, we must protect the operating
system and all other programs and their data from any
malfunctioning program. Protection is needed for any shared
resource. The approach taken by many operating systems
provides hardware support that allows us to differentiate
among various modes of execution.

• A bit, called the mode bit, is added to the hardware of the
computer to indicate the current mode: monitor (0) or user
(1). With the mode bit, we are able to distinguish between a
task that is executed on behalf of the operating system, and
one that is executed on behalf of the user.

• A user program may disrupt the normal operation of the system by
issuing illegal I/O instructions, we can use various mechanisms to
ensure that such disruptions cannot take place in the system.

• One of them is by defining all I/O instructions to be privileged
instructions. Thus, users cannot issue I/O instructions directly; they
must do it through the operating system, by execute a system call
to request that the operating system performing I/O on its behalf.
The operating system, executing in monitor mode, checks that the
request is valid, and (if the request is valid) does the I/O requested.
The operating system then returns to the user.

• To ensure correct operation, we must protect the interrupt vector from
modification by a user program. This protection must be provided by the
hardware. We need the ability to determine the range of legal addresses
that the program may access, and to protect the memory outside that
space. We could provide this protection by using two registers, usually a
base and a limit register. The base register holds the smallest legal physical
memory address; the limit register contains the size of the range. This
protection is accomplished by the CPU hardware comparing every address
generated in user mode with the registers. Any attempt by a program
executing in user mode to access monitor memory or other users' memory
results in a trap to the monitor, which treats the attempt as a fatal error

Memory Protection

• In addition to protecting I/O and memory, we must ensure that the operating system
maintains control. We must prevent a user program from getting stuck in an infinite loop or
not calling system services, and never returning control to the operating system. To
accomplish this goal, we can use a timer.

• A timer can be set to interrupt the computer after a specified period. The period may be
fixed (for example, 1/60 second) or variable (for example, from 1 millisecond to 1 second).
A variable timer is generally implemented by a fixed-rate clock and a counter.

• We can use the timer to prevent a user program from running too long. A simple technique
is to initialize a counter with the amount of time that a program is allowed to run.

• A more common use of a timer is to implement time sharing. In the most straightforward
case, the timer could be set to interrupt every N milliseconds, where N is the time slice that
each user is allowed to execute before the next user gets control of the CPU. The operating
system is invoked at the end of each time slice to perform various housekeeping tasks. This
procedure is known as a context switch. Following a context switch, the next program
continues with its execution from the point at which it left off.

CPU Protection

• A process can be thought of as a program in execution. A process
needs certain resources to accomplish its task.

• A process is the unit of work in a system. Such a system consists of a
collection of processes, some of which are operating-system processes
others are user processes.

• All these processes can potentially execute concurrently, by
multiplexing the CPU among them

• The operating system is responsible for the following
activities in connection with process management:

• Creating and deleting both user and system processes.

• Suspending and resuming processes.

• Providing mechanisms for process synchronization.

• Providing mechanisms for process communication.

• Providing mechanisms for deadlock handling.

• The main memory is central to the operation of a modern
computer system. For a program to be executed, it must be
mapped to absolute addresses and loaded into memory. The
operating system is responsible for the following activities in
connection with memory management:

• Keeping track of which parts of memory are currently being
used and by whom.

• Deciding which processes are to be loaded into memory
when memory space becomes available.

• Allocating and deallocating memory space as needed.

• For convenient use of the computer system, the operating system
provides a uniform logical view of information storage. The operating
system abstracts from the physical properties of its storage devices to
define a logical storage unit, the file. A file is a collection of related
information defined by its creator. These files are normally organized into
directories to ease their use. The operating system is responsible for the
following activities in connection with file management:

• Creating and deleting files.

• Creating and deleting directories.

• Supporting primitives for manipulating files and directories.

• Mapping files onto secondary storage.

• Backing up files on stable (nonvolatile) storage media.

• One of the purposes of an operating system is to hide the
peculiarities of specific hardware devices. The O.S
responsible for the following activities in connection with
I/O system management:

• A memory-management component that includes
buffering, caching, and spooling.

• A general device-driver interface.

• Drivers for specific hardware devices.

• the computer system must provide secondary storage to
back up main memory because that are hold by MM are
lost when power is switched of and the main memory is
too small to accommodate all data and programs. The
operating system is responsible for the following activities
in connection with disk management:

• Free-space management.

• Storage allocation.

• Disk scheduling.

• A distributed system collects physically separate, possibly
heterogeneous, systems into a single coherent system,
providing the user with access to the various resources that
the system maintains. Access to a shared resource allows
computation speedup, increased functionality, increased
data availability, and enhanced reliability.

• Protection is any mechanism for controlling the access of
programs, processes, or users to the resources defined by a
computer system. This mechanism must provide means for
specification of the controls to be imposed and means for
enforcement. Protection can improve reliability by detecting
latent errors at the interfaces between component
subsystems.

• Command-Interpreter System is the interface between the
user and the operating System. Some of these Command-
Interpreter System are user-friendly such as mouse-based
window and- Menus. In other shells, commands are typed
on a keyboard and displayed on a screen or printing
terminal.

• An operating system provides an environment for the execution of
programs. It provides certain services to programs and to the users of
those programs. The specific services provided, of course, differ from one
operating system to another, but we can identify common classes. These
operating-system services are provided for the convenience of the
programmer, to make the programming task easier.

• 1-Program execution . 2- I/O operat.ion .

• 3- File-system manipulation. 4- Communication.

• 5- Error detection. 6- Resource allocation.

• 7- Accountimg. 8- Protection

• System calls provide the interface between a process and
the operating system. These calls are generally available
as assembly-language instructions, and they are usually
listed in the various manuals used by the assembly-
language.

• System programs provide a convenient environment for program
development and execution. Some of them are simply user interfaces
to system calls; others are considerably more complex. They can be
divided into these categories:

• File management.

• Status information.

• File modification.

• Programming-language support.

• Program loading and execution.

• Communications.

• A system as large and complex as a modern operating
system must be engineered carefully if it is to function
properly and be modified easily. There are three different
system structures:

• Simple Structure.

• Layered Approach.

• Microkernels.

• The problems and steps of system design and implementation
are as follows:

• Design Goals.

• Mechanisms and Policies.

• Implementation.

End of chapter two

