
Processes ch3

By

Lecturer Ameen A.Noor

• A process is a program in execution. A process is more than
the program code, which is sometimes known as the text
section. It also includes the current activity, as represented
by the value of the program counter and the contents of
the processor's registers.

• The state of a process is defined in part by the current activity of the
process. Each process may be in one of the following states:

– new: The process is being created

– running: Instructions are being executed

– waiting: The process is waiting for some event to occur

– ready: The process is waiting to be assigned to a processor

– terminated: The process has finished execution

Figure 1: Diagram of Process State

1. At any instant of time, there is only one process running i.e allocated
CPU time.

2. Exit from Running state may occur as a result of any of following
events:
- Completion of process.
- Request of I/O service by a process.
- Time slice determined by interval timer has expired and hence an

interrupt is activated which forces CPU to run OS instructions.
3. The transfer from Ready to Running state (dispatch) is carried out by

OS according to certain criteria as will be shown later when studying
"Processor Scheduling".

4. The term "Execution" means generally, "Ready", "Running", or
"waiting".

• Each process is represented by a process control block (PCB).
PCB is a data structure describing a process and resident in
memory each process has its own PCB in memory and
assigned a process Identification Number (PID). The locations
of PCBs is kept in a special table called "Process Table" which
is resident in memory and used by O.S.

• A PCB contains many pieces of information associated with a specific
process, such as:

• Process states

• Program counter

• CPU registers

• CPU scheduling information

• Memory management information

• Accounting information

• I/O status information

• A uniprocessor system can have only one running process.
If more processes exist, as in multiprogramming system,
there will be only one process running and the rest must
wait until the CPU is free and can be rescheduled.

• A new process as enter the system is put in a queue called
ready queue. It waits in the ready queue until it is selected
for execution. Once the process is assigned to the CPU and it
is executing, one of the several event could occur:

 The process could issue an I/O request, and then be placed
in an I/O queue.

 The process could create a new subprocess and wait for
the termination.

 The process could be removed forcibly from the CPU, as a
result of an interrupt and be put back in the ready queue.

• A process migrates between the various scheduling queues
throughout its lifetime. The operating system must select
processes from these queues in some fashion. The selection
process is carried out by the appropriate scheduler. There are
two types of scheduling algorithms categorized according to the
frequency of their execution.

• Long term scheduler (job scheduler) which selects a process
from the job pool and load them into the MM.

• Short term scheduler (CPU scheduler) which select a process
from the ready queue and allocate it to the CPU.

• Switching the CPU to another process requires saving the
state of the old process and loading the saved state for the
process. This task is known as a context switch.

• The process in the system can execute concurrently, and
they must be created and deleted dynamically.

1. Process Creation:

A process may create several new processes during the
course of execution. The creating process is called a parent
process, whereas the new processes are called the children.
When a process is created it obtains various resources and
initialization values that may be passed along from the
parent process to the child process.

2. Process Termination:

A process terminates when it finishes executing its final
statement and asks the operating system to delete it. At
that point the process may return data to its parent
process and the OS deallocate all the physical and logical
resources that are previously allocated to that process.

• The concurrent process executing in the operating system
may be either independent processes that does not share
any data or cooperating that affects each other’s.

• We may provide an environment that allows process
cooperation for several reasons:

• Information sharing

• Computation speedup

• Modularity

• Convenience

• The cooperating processes can communicate in a shared
memory environment. The scheme requires that these
processes share a common buffer pool. Another way to
achieve the same effect for the operating system is provided
via an interprocess communication (IPC).

• IPC provides a mechanism to allow processes to communicate
and synchronize their actions without sharing the same
address space. This technique is useful for distributed
systems. IPC is provided by a message passing system.

• IPC is sometimes necessary but it presents two main
problems:

1. Address violation problem: IPC means sharing some data
(access common locations in memory). The shared data will
be outside the address space of at least one process which,
in turn, creates address violation problem. This problem
may be solved by using "System Calls" for shared variables.

2. Write Access Problem: If the shared variable is of type
Read/Write then another problem has to be solved in order
to keep data integrity.

