Chapter Ten — Collisions

10 — 1 The Concept of Collision

A collision is a short-duration interaction between two objects. The collision is the term
that represent the event of two particles coming together for a short time and thereby
producing impulse forces on each other. These forces are assumed to be much greater than any
external forces present.

When two particles 1 and 2 of masses Emlj and [mz) collide as shown in figure (10-1),
the impulsive forces may vary in time in complicated ways.
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From Newton's third law, we conclude that:
Ap, = —Ap;
ﬂﬁl + ﬂﬁz = ['
Because the total momentum of the system is:

Psystem = P1 + Pz = constant



Because the impulsive forces are inter nal, they do not change the total momentum of the
system ( only external forces can do that ). Therefore, we conclude that the total momentum of
an isolated system just before a collision equals the total momentum of the system just after the
collision.

Note: Momentum is constant in all collisions but Kinetic energy is constant only in elastic
collisions.

The collisions are divided into two fundamental types like explained in figure (10-2), which are:

A — Elastic collision : One in which the total kinetic energy of the system (K) is the same before
and after the collision

B — Super elastic collision : One in which (K) after the collision is bigger than that before.

C — Inelastic collision : One in which (K) after the collision is less than that before.
D — Completely inelastic collision : One where the objects stick together after colliding.
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Consider two particles that undergo an elastic head-on collision as shown in figure (10-3).
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Figure (10-3), diagram representation of elastic collision of two particles, before and after

In this case, both momentum and Kkinetic energy are conserved, therefore, we have:

mq1vy; + MaTq; = mll?lf + mzvzf ......... (1]
1 1 1 1
Em1v%i+imzv§i =Em1v%f+§mzv§f ......... (2)

After simplifying the eq. (2 ) and rearranging we get:

After factoring ( analyzing the brackets ), both side of eq. ( 3 ), we get:

mi(vli — vlf) (vli + Uif) =Mms (sz - Uzi)(vzf + U'zi) ......... (4‘)
From eq. ( 1 ), we get: m1 (vli - vlf) == mz (sz - in) ......... ES)
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Note : The apprm and (v2:) must be included in eq. (7 ) and eq. ( 8).

For example, if particle 2 is moving to the left initially, then (FZf] is negative.

Let us consider some special cases:

(a):If (my = mzj, then (v” - Vzi) and (sz - vli}. That is the particles
exchange speeds if they have equal masses.

(b) : If particle 2 is initially at rest, then (vﬁ =0) and eq. (7)) and eq. ( 8 ) becomes:
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(c):If (ml], is much greater then (my) and (vy; = 0], from eq. (9 ) and eq. (10),
we see that:

Vip = Uy and Vzp N 20y

That is, when a very heavy particle collide head-on with a very light one tha  tis
initially at rest, the heavy particle continues its motion unaltered after the collision,
and the light particle rebounds with a speed equal to about twice the initial speed
of the heavy particle.

(d): If (mz), is much greater then (m 1] and particle 2 is initially at rest, then:
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Figure (10-4, a and b), diagram representation of Example 10.1

Solution : (a ) — By applying eq. (1), so: My Vy; + MaVz; = My Vyp + MaVzy

(1.60)(4. nn) +(2.10)(—2.50) —-[-f 60)(3.00) + (2.10)v,; om
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i ol

(b)) ing kinetics by spring, sO:
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300 300
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4.4905

300 =+/0.0150 =0.1223 m=12.23 cm

B — Inelastic Collisions



A collision in which the total kinetic energy is not t he same before and after the
collision, but momentum is same . An inelastic collision is one in which the total kinetic
energy is not the same before and after the collision ( even though momentum is constant ).

Inelastic collisions are of two types, as explained in figure (10-2), the types are:

(a) When the colliding objects stick together after the collision, the collision is called
perfectly or completely inelastic.

(b)) When the colliding objects do not stick together, but some Kinetic energy is lost,
the collision is called inelastic.

In most collisions, kinetic energy is not the same before and after the collision because some
of it is converted to internal energy, to elastic potential energy when the objects are
deformed, and to rotational energy.

The important distinction between elastic and inelastic collisions is that, the momentum
is constant in all collisions, but kinetic energy is constant only in elastic collision.

In the case of perfectly inelastic collision as explained in figure (10-5), ¢  onsider two

particles of masses (mlj and w1th initial velocity ( 11) and (1?21) along a

m;)
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Figure (10-5), diagr!m representation of perfectly inelastic collision of two particles

(1800 kg)

Example 10.2 : A car of mass stopped at a traffic light is struck from the rear by a

(900 kg)

car, and the two become entangled. If the smaller car was moving at

(20.0 m/ s) before the collision, what is the velocity of the entangled cars after
the collision?

. momentum before collision = momentum after collision
Solution : , SO



Pi= Pr
p; = myvy; = (900)(20.0) = 18000 kg.m/s

18000

Y5 = 2700

= 6.6667 m/s

(m, =0.25 kg) and velocity (vy; =5m/s) collides head-on

with a ball of mass (m;=0.8kg) that is initially at rest (vz; = 0m/ S:J.
No external forces act on the balls. If the collision is elastic, what are the
velocities of the balls after the collision?

Example 10.3 : A ball of mass

momentum before collision = momentum after collision
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Figure (10-5), diagram representation of ballistic pendulum, example 10.5

Solution : from figure (10-5), (mlj is the mass of bullet, and (mzj is the mass of the large block

of wood, as used in ballistic pendulum. Applying eq. (11 ), and ( 12 ), where (01:) is



the velocity of bullet, and (v2:) is the velocity of the block, before the collision
(vz; = 0), the collision is inelastic, so:

_ myvyitmavy;

1
K;=-(my; +m,)v? Ve =
f 2( 1 z]fand f

(my+mz)  where V2i = 0, so:

1 My vy; + MUy ° m5, vi,
Kf=—(m1—|—m2)( 1V1 2 z) _ 1i V1i
2 (my + m,) 2(my +m,)

The kinetic energy immediately after the collision is less than the initial kinetic energy
of the bullet, and there is an loss in mechanical energy due to the collision, therefore,
the kinetic energy of the block and bullet at the bottom is  transformed to potential

energy at the height (h‘], so:
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—mlvh += mzvzt (0 005)(198.9699)2 + = (1 0)(0)2
K, =98.9726] '—'
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Solution : (a):

2 2 .2
1 (m1”1i+mz”2i) _ mmy; vy;

K,==(my+ -
f 2 (ml mz] 2{:'"11 + mzj

(my+ m;)

~ (0.005)2(198.9699)%  0.9897
F 2(0.005+1.0)  2.0100

= 0.4924]

Kioss= K;— K;=98.9726 — 0.4924 = 98.4802 ]



Example 10.6 : Two bodies of masses (8kg) and (4kg) move along the (x) axis in opposite
direction with velocities of (11 m/ s) and (=7 m/ S], respectively. They
collide and stick together. Find their velocity just after collision.

. momentum before collision = momentum after collision
Solution : , SO

myvy; + Mavy; = (Mg + my)vg
8)(11) + (4)(-7) = 8+ 4)v, — 88— 28— 12v,

60
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Example 10.6 : Two clay balls collide head-on in a perfectly inelastic collision. The first ball has a
mass of (0.5 kg ) and an inigal velocity of (4 m/ s) to the right. The second
ball has a mass of (0.25 kg) and an initial velocity of (3 m! s) to the left.
What ﬁhm Bl Benergy durin af o@ I
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Solution

l"
P; —mivh—l—mzvzl—[{] 5)(4)+(0.25)(—3)=2—-0.75=1.25kg.m/s
- o
Py = (my+my)vp = (0.5 + 0.25)v; _0?5vf
ulk l"l"‘l] I

B Pi 1.2
I T tn,+my) 0. '?5 =1.6667 m/s Q“ON
MR R e l)
KI——mlvit—i—

1
> smavh = (0. 5)(4)2+ (0.25)(—3)% = 4 + 1.1250

iz .;nl
K;=5.125]
[

1 1
K; = (my+my)vi = Ky =2 (0.5+0.25)(1.6667)°
~——

1
K= 2 (0.75)(2.7779) = 1.0417 ]

The decrease in Kkinetic energy during the collision is:

AK = K; — K;=5.1250 — 1.0417 = 4.0833 ]

Table (10-1), summarizes the properties of types of the collisions in physics.



Table (10-1), descriptions type of collisions

Type Description Happens Conserved
quantity

Elastic | Total kinetic energy as well as total | The two objects bounce after the Momentum
momentum, is the same before and | collision so that they move separately | and Kkinetic
after the collision. energy

Inelastic | Total kinetic energy is not the The two objects deform during the Only

same before and after the collision, | collision so that the total kinetic Momentum
even though momentum is energy decreases, but the objects
constant. move separately after the collision

When the colliding objects do not
stick together, but some ki  netic
energy is lost, as in the case of a
rubber ball colliding with a hard
surface, the collision is called
inelastic with no modifying adverb

wo objects stick together afte Only

olllsmn sot eir, O Momentum
e fltles

Perfectly | Total kinetic energy is not t
inelastic | same before and aft

A% e t [‘WW
toge llision, as
happ he a meteori'"t

with th
called
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In a two or

For two dime

momentum:
m‘]_ U‘]_m; + mZUZI.‘I: mlvlfx + mz szx ......... (13)
My Uy, + My Vs, = My Vg, + MaVafpy e (14)

Consider that particle 1 of mass (ml) collides with particle 2 of mass (mz ), where
particle 2 is initially at rest as in figure (10-6).



[Partic]e 2 at rest
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(b) After the collision

Figure (10-6), diagram representation of collision in two dimensions, of two particles
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—mlvh += mzvzl mlvlf += mzvzf - (2)
| T o
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Emlvh 2m1‘?1f + zmz"?zf - (15)_
L T
If the collisi nelastic, kinetic is not conserved and e

s to sink a target ball 2 ( violet ball ) in the
in Figure (10-7). If the angle to the corner pocket is

(35 ), at what angle is the cue ball 1 (white ball ) defle cted? Assume that
friction and rotational motion are unimportant and that the collision is elastic.



Cuc ball 3
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Figure (10-7), diagram representation of Example 10.7

Solution : In the figure there are two balls, cube ball and target ball, target ball is initially at rest,

and (ml = mzj so that:

1 2 1 1 2 2
_mlvll = mlvlf+ mzvzf == Ul[ - Ul_f + sz ......

2

Applyu\“aﬂﬂlﬂumtm t::w;ﬁheﬁﬂghsmns, which gie:

My Vy; + My = MV + MyVy = MUy + My (0) = myvyp +myv;

AR
Uli = vlf + sz ...... {:2)1
If we square’b;th sigl_‘f_ﬂf eg( T 10n of dot product of two vectors,
2
1

Vi = (1-"1}' + vzf) ; (1?1f + T?zf) = 'l?%i = 'l?% + 1-'?% + 21’?1f .'l?zf
f f

From figure tl‘e between sz ):15 (6 + 35 )

Vi . Ugp = vlfvzf cns(ﬁ' + 35
vi = 1"1)' + vzf + 2v1fv3f cus(B +35) ... (3) 10
Rearranging cq. (Hillo STBINI8equitior wchlpivB& S

vif + v%f + 20,50y cos(8+35) —vi; =0 ... (4)

2
Substituting on (viaom eq. (1) into eq. (4), we
2 2 : 2 2\
vif + v+ 2v,50y cos(6+35) — (1;‘»'1}« + vzf) =0

PAUTLY cos(6+35)=0 = vlfvz:cns(ﬂ +35)=0

cos(8+35) = =0 = cos(8+35)=0 = B =cos 1(0)

U'lfvzf
B=90 = 90 =0+35 = 6=90—-35 =55

The angle that the cue ball 1 (white ball ) is deflect.
Example 10.8 : Proton 1 collides elastically with proton 2 that is initially at rest. Proton 1 has an

5
initial speed of (3' 5 X10 mKS)

as was shown in figure (10-8). After the collision, proton 1 moves at an angle of

and makes a glancing collision with proton 2,

(6 =37) to the horizontal axis, and proton 2 deflects at an angle ((ﬁ] to the



same axis. Find the final speeds of the two protons and the angle ((P)

Y
Proton 1 Proton 2 vy sin 6 /_‘_f)/“:
o
" vy cos@
rd "Il ’_’f H
:ﬁ _______ _:":__I_ _________
x‘\/-
'?{: Uy COS @

(b) After the collision

—'-[-’-_:-I:'.'til'.l lﬁ‘

(a) Before the collision

Figure (10-8), diagram representation of Example 10.8
om figure, so:

Solution : Because both particles a know that (m, = mzj

Applying conservation of mgmgmtu dimensional cpliSionsy, iyes:
mlvli+m2v2 mlvlf+mzvz = mlvll+m2(0) —mlvlf+mzvzf
vu =y oW | ANNL AV
The r esultah&tl_ (x — direction) ,

vy; = Vg5 cos(@) + sz cos(¢p) = 3.5x10° = Vyf cos(37) + vy cos(¢
vyf ms[¢] — 3.5x10° — vy cos(37) (1)

The resultantln r— dzrectmn)“ 1 A

Vy; = Uy sm(ﬂ] — Uy sm(qp] = 0 =vy sin(37°) — Uy sm(cp]
vy sin(37) = vzf sm(¢] (2). b =

The resultant spfl (x and y - y —direc tmnsj‘

Z

- F- |
vi; +vi = 1.2250 X 10! ... (3)
By squaring both tvls of equations

(vzf cns[(p])z =

(3.5%x10° —vy; cns[S'?:])z
1.2250 x 1011

(4)

v3; cos*(P) =

(vif sin(S?:])z = (v Siﬂ@’])z

—7 X 10° vyp cos(37) + vi; cos*(37)

vff sin®(37) = U%f sin*(¢) ... ... (6)
vi, +vd, = 1.2250 X 1011 . (7)
vi, = 1.2250 x 1011 — vZ, ... (8)
vy, = Jl. 2250 X 1011 — v, ... (9)

(3)



By adding eq. ( 6 ) to eq. (5) rearrange of their terms and simplify, we get that:
The left side of eq. ( 10 ), is:

A= v%r cos*(¢p) + UEI sin*(¢p) = A= I?Ef{ cos?(¢) + sin*(¢)} s

The right side of eq. (10 ), is: _ _ )
B = 1.2250 X 10'* — 7 X 10° vy; cos(37) + v§; cos*(37") + vi, sin*(37)

B =1.2250 x 101! — 7 x 10° vy X 0.7986 + v%f{ cos*(37) + sin?(37)}
B =1.2250 x 10! — 5.5904 x 10° vy + v%f ...... (10 b)

So eq. (10) is:
v%r =1.2250 x 10! — 5.5904 x 10° vyp + vff ...... (10)

Now substituting eq. (10 ) in eq. ( 3 ), so we get:
vif +1.2250 x 10'! — 5.5904 x 10° vy + vff = 1.2250 x 10!

21:-’% —5.5904 x 10° vyp=0 ... (11)

D1v1d1ng the two sides of eq. (11) I..(E _”_): we get:
—2.7952X10°=0 = v;;=2.7952X 10° m/s ..... (_12);‘

o ANLOBVC P, T SOKRY

(2.7952 x 105)" + v, = 1.2250 X 10" ...

7.8131 x 10'° + v%r = 1.2250 x 10!
vgf —1.2250 X 101 — 0.78131 x 10!! = vgf = 0.4437 x 101!

vy = /(0.4437 X 1011) = 2.1064 X 10° m;sAl ;
To find (¢) we ituting values of (vlf )ﬁ( if ) into eq
vy cos(p) = 3.5X10° — vy, cns(S? ) e S‘O
cos(y — 33X 10— u” cos(37° )IE&

AT

3.5x10° — 2.?952 X 10° X 0.7986 _(3.5—-2.2322) X 10°

cos(¢) = 2.1064 x 10°__ ~ T 2.1064 x 10°
1.2678 x 10° "

cos(gp) = 5 1064 X105 — 0.6019 = ¢ = cos 1(0.6019)

é=52.9939°

Example 10.9 : Two players are collides in the point on the football stadium, the first moving
from West to East with momentum @1 =500 kg mf o ], while the second

moving from South to North with momentum (Pz =300 kg.m/s J, find the
magnitude of total momentum and their direction.
Solution :



p1=>500kg.m/s from West to East.
p; =300kg.m/s from South to North.
Protar = (500 kg.m/s)> + (300 kg.m/s)? = 583.0952 kg.m/s

(P2 300 :
B?’mmi = tan (E) = B?snmi = tan” (500) BPmm& = 30.9638
Example 10.10: A (1500 kg) car 1 traveling from West to East with a speed of
(25.0i m/ s) collides at an intersection with a (2500 kg) large car 2

traveling from south to North at a speed of (20. 0jm/ 5‘], as shown in figure

(10-9). Find the direction and magnitude of the velocity of the wreckage after

the collision, assuming that the vehicles undergo a perfectly inelastic collision
(that is, they stick together).

‘ r (20.03) m/s

I, Car 2

; D) 0 ran&epresentatl
Solution : .B

(x — direction)
- ’

hat the car 1 continties to moving along positi
pving along positive (}’___ leECtl,ﬂn]
(x — direction)

y —

and car 2 continues'% after the collision.

The initial momentu , and the total final momentum in

the same direction, s¢

Z px—hsfnrs = Z px—uftsr

prf =m,v, = (1500 kg)(25.0m/s) = 37500 kg.m/s

pri =3.75x10* kg.m/s

From the figure we see that the wreckage cars after the collision, moving in (9 ) direction, so:

prf = (my + my)vscos(0) = ((1500 + 2500) kg) ((vf cns[Bj) m;’s)



prf = 4000 vs cos(@) kg.m/s

Because the total momentum in the (x dlrectwn]

equations to obtain the eq. (1), so:

3.75 x 10* kg.m/s = 4000 kg X v cos(8)
3.75 x 10* kg.m/s
4000 kg

is constant, we can equat e these two

vy cos(8) = =9.3750 m/s ... (1)

(y — direction)

Similarly, the initial momentum of the system in the , and the total final

momentum in the same direction, so:

Z Py—before = Z Py—after

Zp},i =m,v, = (2500 kg)(20.0 m/s) = 50000 kg.m/s
Zp.,,f =5.0x10* kg.m/s
) —

Z p,s = (my +m;)v;sin(8) = (1500 + 2500) kg) ((v; sin(6)) m/s)

Lo —twowineta ey SOXPOT e
5.0 X 10* kg.m/s = :H_}Ol_l vsin(@) kg.m/s

) 5.0 X 10* kg.m/s
vs sin(f) = 2000 kg =12.5 m/s ... (2)

If we divide e. by eq. (1), we get: ___ on™ 1

vpsin(®)  125m/s (6) = 1.3333
v; cos(6) "~ 9.3750 m/s anie) =1 N
6 = tan~1(1.3333) — 0 — 53.1301° E‘RS ‘
b
When substitutedt‘ AMM )t ()

. 12.5 m/s
vpsin(@) = 12.5 m/s = vy = sin(53.1301)

9.3750 m/s

8) — 9.3750 = vy = -

v;cos(6) m/s = v = 53,1301
F——’

Another method of solution :

E pbefnreco“isioﬂ: E pufte‘rco“isioﬂ

Using vector method for car 1 the momentum before the collision is:

P1-before = M1 X v; = 1500 kg X 25.0 m/s = 3.75 x 10* kg.m/s

Using vector method for car 2 the momentum before the collision is:

P2_before = Mz X2 = 2500 kg X 20.0 m/s = 5.00 X 10* kg.m/s

= 15.6250 m/

=15.6250m/s




Because (Pz] perpendicular to (pl), using Phitagors theory to find the resultant momentum,
so:

2 2
ptntu!—after = J(pl—befnre) + (pz—bgfnre) = \KES ?5 X 104]2 + (5 00 X 104]2
Pitotal—after = 62500 = 6.25 X 10* kg.m/s

To find the direction of (pt"tm_ af t”), using the inverse of tangent angle, so:

—before 5.00x10* kg™ . ]
0 =tan! (p—z bef ) — 0 =tan! (—4 54) =53.1301 with x — axis
Pi1-before 3.75x10 kﬂ':

To find the magnitude of (vf inal ), using the inverse of tangent angle, so:
Ptotal—after = Miotal X Vfinal = Protal-after = (Mg + M2) X Vfingl
6.25 X 10* kg.m/s = ((1500 + 2500) kg) X Vfinai

6.25x 10 kg.m/s

Vfinal 2000 kg 15.6250 m/s
Examp R“‘eat rig mn intersection.
m motion aft ﬁ hown in figuresl(-
et ing, and whi
s1 n
) p‘ B. (c¢): Thei magnitude.
iS 1Impdssible to tell f

Solution :

The correct answer i

(45)

since the angle with respect to the original direction of Car A is

smaller than , car A must have had a larger momentum and thus was traveling faster.

f (20’ 000 kg], sit on a track. A

fifth car of identical mass approaches them with a velocity of (15m/ SJ, as
explained in figure (10-?). This car collides and couples with the other four cars.

Example 10.12 : Four railroad cars, all with the same mass o
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Figure (10-11), diagram representation of Example 10.12

What is the initial momentum of the system?
A : Select the correct answer from the following values by proof:

(a): 200,000 kg.m/s | 300,000 kg.m/s
(¢y: 600,000 kg.m/s 4 1,200,000 kg.m/s

Solution : (b ) : 300,000 kg.m;’s. The proof is:
Pinitial = M5 X V5 = Pinitig = 20000 kg X 15m/s
Pinitial = 3["]["]0 kgmfs

What is the velocity of the five coupled cars after the collision?
B : Select the correct answer from the following values by proof:

(a):lmfs. (b):Bm;’s sm/s (d):lﬂmz’s.

smuﬁonlf_m_fml&? df com

r
Myppq = My + Mz + M3+ My + mEOXp
m,,;,; = 20000 + 20000 + 20000 + 20000 + 20000 = 100000 Kk

d H.. B BT EEE e

Pinitial = Pfinal = Pfinal = Miotal X Vfinal = Vfinal = Pfinal [Myotal
300000 kg.m/s

@ = = 3

Urinal =7"100000 kg m/s
Is the kinetic e after the railroad ars equial go_th ginal kinetjc e offca
C : Select the co ans he f@llowi y proof:

(a): Yes. )ﬁ: I ends. S‘
Solution : (b)) : e : ‘ T.ﬂR

1 1
Einitia1 = Emﬂ’é = Emitial = 2 X 20000 kg x (15m/s)*
Einitiar = 2250000 ] = 2250 E’_"'

1 1
Efinal = Emtum:'ﬁ’?im: = Efjpa = 2 % 100000 kg X (3m/s)?

=

Efina1 = 450000 ] = 450 kJ
Efinat # Einitial

Example 10.13 : Which of the following equations can be used to directly calculate an object's

momentum, (p)"

(a):P =MV, (b):szﬂt. (c):ﬂszﬂt.

Solution : The equation is: (a) P=mv



Example 10.14 : Two objects move separately after colliding, and both the total momentum and
total kinetic energy remain constant. Identify the type of collision from the
following answers:

(a):elastic. (b): nearly elastic. (c): inelastic. (d): perfectly inelastic.

Solution : The answer is: (a) : elastic.

Example 10.15 : If a force is exerted on an object, which statement is true?
(a): Alarge force always produces a large change in the object’s momentum.
(b) : A small force always produces a large change in the object’s momentum.
(c) : A small force applied over a long time interval can produce a large change in the
object’ momentum.
(d) : A large force produces a large change in the object ’s momentum only if the force is
applied over a very short time interval.
Solution : Homework to student.

Example 10.16: When comparing the momentum of two moving objects, which of the following is
correct?
(a): The object with the higher veloc1ti will have less momentum if the masses are equal.

(b ) : The more massive obje ss momentum if its veloclty is greater.
(c): The less massive obJect
(

omentum if th t
Solutio

s momentu

(b ) Fin Qg i
Q2 - A (m; = 1500 kg) V

(n; = 2500 kg van traveling North at s
terwards, calculate the magni

intersection with a
vehicles stick toget
collision.

Q3 — Proton 1 collides elas
(3.5 x 105

oton 2 that is initially at rest. Proton 1 has an initial speed of
m/ S). After the collision, proton 1 moves at an angle of (37) to the horizontal
axis, and proton 2 deflects at an angle (@) to the same axis. Find the final speeds of the two

protons and the angle ((P)

A (0.015kg) marble moving to the right at (0.225m/s)

(0.03 kg) shooter marble moving to the left at (0.18m/ S]. After the collision, the

makes an elastic head-on collision

Q4-

with a



smaller marble moves to the left at (0.315 m/s ] Assume that either marble rotates before or
after the collision and that bot h marbles are moving on a frictionless surface. What is the

(0.03 kg)

velocity of the marble after the collision?

(2.5kg)

QS —In ballistic pendulum the mass of the block of wood is and the mass of the bullet is

(0.01 kg ) The block swings t 0 a maximum height of (0.650m) above the initial position.
Find the initial speed of the bullet.
Q6 — A (0.025kg) bullet is accelerated from rest to a speed of (550 m/s) ina (3.000 kg)

rifle. The pain of the rifle's kick is much worse if you hold the gun loosely a few centimeters from
your shoulder rather than holding it tightly against your shoulder.
(a) : Calculate the recoil velocity of the rifle if it is held loosely away from the shoulder.
(b) : How much kinetic energy does the rifle gain?
(¢) : What is the recoil velocity if the rifle is held tightly against the shoulder, making the

effective mass (28' 0 kg j‘?

(d) : How much kinetic energy is transferred to the rifle-shoulder combination?

roller skatin ‘ith and picks (40 kﬂ;jﬁ. What is their
ﬁmlef oxpdt-o¥
nip:

Q7 -An (80Kkg)

veloci




