
16

Lecture 4

Not:

 The variable list may consist of one or more identifier names separated by

commas. Some valid declarations are shown here:

Example:
int i, j, k;
char c, ch;
float f, salary;
double d;

The line int i, j, k; both declares and defines the variables i, j and k; which instructs

the compiler to create variables named i, j and k of type int.

 Variables can be initialized (assigned an initial value) in their declaration. The

initializer consists of an equal sign followed by a constant expression as

follows:

Example:
int d = 3, f = 5; // definition and initializing d and f.
float A1 = 2.2; // definition and initializes 2.
char x = 'x'; // the variable x has the value 'x'.

4.1 C++ Program Structure
Let us look at a simple code that would print the words Hello World.

 #include <iostream.h>

int main() // main() is where program execution begins.

{

cout << "Hello World"; // prints Hello World

return 0;

}

17

Let us look at the various parts of the above program:

1. The C++ language defines several headers, which contain information that is

either necessary or useful to your program. For this program, the header

<iostream.h> is needed for output string in the screen.

2. int main() : is the main function where program execution begins.

3. // : is a single-line comment available in C++. Single-line comments begin

with // and stop at the end of the line.

4. cout << " : This is my first C++ program."; causes the message "This is

my first C++ program" to be displayed on the screen.

5. << : it is the send operator

6. return 0: terminates main() function and causes it to return the value 0 to the

calling process.

7. ; : semicolon , its used as terminator for every C++ statement.

 The OUTOUT for this program is :

4.2 Standard Output (cout)
cout: the standard output of a program is the screen, and the C++ stream object

defined to access it is cout. The << operator is overloaded to output data items

of built-in types integer, float, double, strings and pointer values.

Example:

cout << "Output sentence"; // prints Output sentence on screen

cout << 120; // prints number 120 on screen

cout << x; // prints the content of x on screen

4.3 Standard input (cin)

cin: is the input stream object, its read the input value from keyboard.

>> : it is the operator use to get from operator.

endl : is used to add a new-line at the end of the line.

Hello World

18

 You can also use cin to request more than one datum input from the user:

cin >> a >> b;

 is equivalent to:

cin >> a;

cin >> b;

 In both cases the user must give two data, one for variable a and another one for

variable b that may be separated by any valid blank separator: a space, a tab

character or a newline.

Example:

Example:

 #include <iostream.h>

int main()

{

char name;

cout << "Please enter your name: ";

cin >> name;

cout << "Your name is: " << name << endl;

return 0;

}

#include <iostream.h>

int main()

{

 cout << "This is a sentence,";

cout << "This is another sentence.";

return 0;

}

19

 The OUTPUT for this program: will be shown on the screen one

following the other without any line break between them:

Example:

 The OUTPUT for this program: will be shown on the screen:

This is a sentence,This is another sentence.

// i/o example

#include <iostream.h>

int main ()

{

int i;

cout << "Please enter an integer value: ";

cin >> i;

cout << "The value you entered is " << i;

cout << " and its double is " << i*2 << endl;

return 0;

}

Please enter an integer value: 702

The value you entered is 702 and its double is 1404.

20

Lecture Five
C++ Operators

An operator is a symbol that tells the compiler to perform specific mathematical or

logical calculations on operands(variables).

Types of operators available in C++

 Arithmetic / Mathematical operator
 Assignment operator
 Increment Decrement operator
 Relational operator
 Logical operator
 Unary operator

Arithmetic Operator:

There are following arithmetic operators supported by C++ language:

Assume variable A holds 10 and variable B holds 20, then:

Increment Decrement operator

Increment Decrement operators increase or decrease the operand by one
value .

21

Example: Assume A=10, find the output result for the following expressiones:

Assignment operator

Assignment operator is used to copy value from right to left variable.

Suppose we have:

float X = 5, Y = 2;

= Equal sign Copy value from right to left. X = Y, Now both X and
Y have 2

+= Plus Equal operator to increase the left

operand by right operand.

X+=5 X=X+5 will

give X= 10

-= Minus Equal operator will return the

subtraction of right operand from left operand.

Y-=1 Y= Y-1 will

give Y=1

*= Multiply Equal operator will return the product of
right operand and left operand.

X *= Y X = X * Y,
X = 10

/= Division Equal operator will divide right operand by
left operand and return the quotient.

X /= Y X = X / Y,
X = 2.5

%= Modulus Equal to operator will divide right operand
by left operand and return the mod (Remainder).

X %= Y is similar to X =
X % Y, now X is 1

Examples:

Rewrite the equevelment statmentes for the following expressions anf find the

results, assume X=2, Y=3, Z=4, V= 12, C=8.

22

Relational Operator:

Relational operators are used for checking conditions whether the given condition is
true or false. If the condition is true, it will return non-zero value, if the condition is false,
it will return 0.

Suppose we have,

int X = 5, Y = 2;

Operator Name Description Example

> Greater than
Check whether the left operand is
greater than right operand or not.

(X > Y) will
return true

< Smaller than
Check whether the left operand is
smaller than right operand or not.

(X < Y) will
return false

>=
Greater than
or Equal to

Check whether the left operand is
greater or equal to right operand
or not.

(X >= Y) will
return true

<=
Smaller than
or Equal to

Check whether the left operand is
smaller or equal to right operand
or not.

(X <= Y) will
return false

== Equal to
Check whether the both operands
are equal or not.

(X == Y) will
return false

!= Not Equal to
Check whether the both operands
are equal or not.

(X != Y) will
return true

23

Logical Operators

Logical operators are used in situation when we have more then one condition in a
single if statement.

Suppose we have,

int X = 5, Y = 2;

Operator Name Description Example

&& AND
Return true if all conditions are true, return false
if any of the condition is false.

if(X > Y && Y < X) will
return true

|| OR
Return false if all conditions are false, return true
if any of the condition is true.

if(X > Y || X < Y) will
return true

! NOT
Return true if condition if false, return false if
condition is true.

if(!(X>y)) will return
false

24

Examples: The following example to understand all the

arithmetic operators available in C++.

 The output for the above program is:

 #include <iostream.h>

main()
{
int a = 21;
int b = 10;
int c ;
c = a + b;
cout << "Line 1 - Value of c is :" << c << endl ;

c = a - b;
cout << "Line 2 - Value of c is :" << c << endl ;

c = a * b;
cout << "Line 3 - Value of c is :" << c << endl ;

c = a / b;
cout << "Line 4 - Value of c is :" << c << endl ;

c = a % b;
cout << "Line 5 - Value of c is :" << c << endl ;

c = a++;
cout << "Line 6 - Value of c is :" << c << endl ;

c = a--;
cout << "Line 7 - Value of c is :" << c << endl ;

return 0;

}

Line 1 - Value of c is :31
Line 2 - Value of c is :11
Line 3 - Value of c is :210
Line 4 - Value of c is :2
Line 5 - Value of c is :1
Line 6 - Value of c is :21
Line 7 - Value of c is :22

25

Example: find the output result for the following logical
operationes:
Assume a=4, b=5, c=6

Example: find the output result for the following logical
operationes:

26

Lecture 6

DECISION-MAKING STATEMENTS

Decision making structures require that the programmer specify one or more

conditions to be evaluated or tested by the program, along with a statement or

statements to be executed if the condition is determined to be true, and

optionally, other statements to be executed if the condition is determined to be

false.

Following is the general from of a typical decision making structure found in

most of the programming languages:

C++ programming language provides following types of decision making

statements.

27

If Statement
 if statement consists of a boolean expression followed by one or more
statements.

Syntax
The syntax of an if statement in C++ is:

If the boolean expression evaluates to true, then the block of code inside the if

statement will be executed. If boolean expression evaluates to false, then the

first set of code after the end of the if statement (after the closing curly brace)

will be executed.

Example:

Write C++ program to read a given integer value from keyboard and print

the value if it is positive.

28

The output for the above program is : the input value

if…else Statement

if statement can be followed by an optional else statement, which executes

when the boolean expression is false.

Syntax

The syntax of an if...else statement in C++ is:

 #include <iostream.h>

int main()
{
int a;

cout << "Input integer value a :";

cin >>a;

if (a>0)
 cout<<"a is positive number" << endl;

cout << "the value of a is :"<< a;

return 0;
}

 Input integer value a : 10

 a is positive number

 the value of a is: 10

29

If the boolean expression evaluates to true, then the if block of code will be

executed, otherwise else block of code will be executed.

30

Example:

Write C++ program to read a given integer value from keyboard and print

the value if it is positive otherwise print it is negative

.

Example:

Write C++ program to read a given integer value from keyboard and

check if the value is even or odd .

 #include <iostream.h>
int main()
{
int a;

cout << "Input integer value a :";

cin >>a;

if (a>0)
 cout<<"a is positive number" << a;

else
 cout <<"a is negative number"<< a;

return 0;
}

 #include <iostream.h>

int main()
{
int a;
cout << "Input integer value a :";
cin >>a;
if (a % 2 == 0)
 cout<<"a is even number" << a;
else
 cout <<"a is odd number"<< a;
return 0;
}

31

Example

Write C++ program to calculate Z value according to the following

equations:

Z = {
𝑿 + 𝟏𝟎 𝒊𝒇 𝑿 > 𝟎

𝟐𝑿 + 𝟓𝟎 𝒊𝒇 𝑿 < 𝟎

 #include <iostream.h>

int main()
{
int X, Z;
cout << "Input integer value X :";

cin >>X;

if (X > 0)
 {
 Z=X+10;
 cout<<" Z value is:" << Z;
 }
else
 {
 Z= 2*X+50;
 cout <<"Z value is :"<< Z;
 }
return 0;
}

32

Lecture 7
Loops

 There may be a situation, when you need to execute a block of code

several number of times. In general, statements are executed

sequentially: The first statement in a function is executed first, followed

by the second, and so on.

 Programming languages provide various control structures that allow for

more complicated execution paths.

 A loop statement allows us to execute a statement or group of

statements multiple times and following is the general from of a loop

statement in most of the programming languages

Loop Types:

C++ programming language provides the following type of loops to handle

looping requirements.

Loop Type Descryption

for loop The initialization, condition and increment/decrement all

put together. Initialization will be done once at the

beginning of loop. Then, the condition is checked by the

compiler. If the condition is false, for loop is terminated.

But, if condition is true then, the statements are executed

until condition is false.

while Loop Repeats a statement or group of statements while given

condition is true. It tests the condition before executing

the loop body.

do...while loop Like a ‘while’ statement, except that it tests the condition

at the end of the loop body.

nested loops You can use one or more loop inside any another ‘while’,
‘for’ or ‘do..while’ loop.

33

For Loop: A for loop is a repetition control structure that allows you to efficiently

write a loop that needs to execute a specific number of times.

Syntax of For Loop

 for (initialization ; condition; increment)

 {

 Statements ;

 }

Here is the flow of control in a for loop:

 The (initialization step is executed first, and only once. This step allows

you to declare and initialize any loop control variables. You are not

required to put a statement here, as long as a semicolon appears.

 Next, the condition is evaluated. If it is true, the body of the loop is

executed. If it is false, the body of the loop does not execute and flow of

control jumps to the next statement just after the for loop.

 After the body of the for loop executes, the flow of control jumps back up

to the increment statement. This statement allows you to update any

loop control variables. This statement can be left blank, as long as a

semicolon appears after the condition.

 After the condition becomes false, the for loop terminates.

Example:

#include<iostream.h>

 void main()

 {

 int a, num;

 cout << "Enter any number : ";

 cin >> num;

 for (a=1;a<=num;a++)

 cout << "\nHello...!!"; }

34

The output:

While Loop

While loop is also called entry control loop because, in while loop, compiler

will 1st check the condition, whether it is true or false, if condition is true

then execute the statements.

Syntax of While Loop

 while (condition)

 {

 Statmentes;

 --- - -- - -- -- - -

 }

 Here, statement(s) may be a single statement or a block of

statements.

 The condition may be any expression, and true is any non-zero

value. The loop iterates while the condition is true. When the

condition becomes false, program control passes to the line

immediately following the loop.

 Enter any number : 5

 Hello...!!

 Hello...!!

 Hello...!!

 Hello...!!

 Hello...!!

35

Example

The output:

Homework: trace the following c++ cods and Find the final output for

these cods :

#include <iostream.h>

//using namespace std;

int main ()

{

// Local variable declaration:

int a = 10;

// while loop execution

while(a < 20)

{

cout << "value of a: " << a << endl;

a++;

}return o;}

value of a: 10

value of a: 11

value of a: 12

value of a: 13

.

.

value of a: 19

يقوم هذا البرنامج بطباعة قيمة

 a<20))طالما الشرط aالمتغير

 TRUEمتحقق او

36

#include <iostream.h>

int main()

{

 int n, sum = 0;

 cout << "Enter a positive integer: ";

 cin >> n;

 for (int i = 1; i <= n; ++i) {

 sum += i;

 }

 cout << "Sum = " << sum;

}

#include <iostream.h>

int main()

{

int n = 10 ;

 while (n > 0 (

{

 cout << n << " ," ;

 -- n ;

 }

 cout << "End of program \n";

 return 0;

}

37

Exercises

1. Write C++ program to find the summation of the following series:

Sum= 1+3+5+7+ +99

2. Write C++ program to read 10 integer numbers, and find the sum
of the positive numbers only.

38

3. Write C++ program to find the summation of the following series :

39

4. Write C++ program to find the summation of students marks, and

its average, assume the student have 8 marks.

40

Lecture 8

ARRAY

 Array : is a collection of similar data type. A single variable can hold

only one value at a time, If we want a variable to store more than one

value of same type we use array. C++ provides a data structure, the

array, which stores a fixed-size sequential collection of elements of

the same type.

 Instead of declaring individual variables, such as num0, num1, ..., and

num99, you declare one array variable such as ns and use:

ns[0], ns[1], and ..., ns[99] to represent individual variables.

 A specific element in an array is accessed by an index. All arrays

consist of adjacent memory locations (مواقع متجاورة في الذاكرة).

 The lowest address corresponds to the first element and the highest

address to the last element.

41

 Address of first element is random, address of next element depend

upon the type of array. Here, the type is integer and integer takes two

bytes in memory, therefore every next address will increment by two.

 Index of array will always starts with zero.

Declaration of Arrays: Declaration of array means creating sequential

blocks of memory to hold fixed number of values.

Syntax of array declaration :

 Data-type Array-name [size of Array] ;

Example of array declaration :

 int Array [5]; //Statement 1

 float Array [10]; //Statement 2

 char[50]; //Statement 3

In the above example, statement 1 will allocate memory for an integer

array which will hold five values and statement 2 will allocate memory

for float point array which will hold ten values. statement 3 will allocate

memory for an char array which will hold fifteen values.

42

Initialization of Array

Initialization means assigning value to the declared Array. You can

initialize C++ array elements either one by one or using a single

statement as follows:

 float A1 [5] = { 78.1, 45.22, 0.5, 89.14, 56.7 };

In the above example we are declaring and initializing an array at same

time.

 A1[0] A1[1] A1[2] A1[3] A1[4]

78.1 45.22 0.5 89.14 56.7

If we assign another values to some elements in A1 array such that:

A1[2]=33.50;

A1[4] = 22.4; // assigns element number 5th in the array a value of 22.

Then the array A1 will be :

 A1[0] A1[1] A1[2] A1[3] A1[4]

78.1 45.22 33.50 89.14 22.4

43

Few key notes:

 Arrays have 0 as the first index not 1. In this example, A1[0] is the

first element.

 If the size of an array is n, to access the last element, (n-1) index is

used. In this example, A1[4] is the last element.

 Suppose the starting address of A1[0] is 2120. Then, the next

address of A1[1], will be 2124, and address of A1[2] will be 2128

and so on. It's because the size of a float is 4 bytes.

Example:

 #include<iostream.h>

 void main()

 {

 int array [5]; // declaration of array

 int i;

 for(i=0;i<5;i++)

 {

 cout << "\nEnter any number : ";

 cin >> array [i]; //Input array from user.

 }

 for(i=0;i<5;i++) //Output array to screen.

 cout << array [i];

 }

44

 Output :

 Enter any number : 78

 Enter any number : 45

 Enter any number : 12

 Enter any number : 89

 Enter any number : 56

 78, 45, 12, 89, 56, Pointer and Array

Question: //--- Print array in reverse order

Example:

#include<iostream.h>

 void main()

 {

int n[10]; // n is an array of 10 integers

int i ;

 //initialize elements of array n to 0

for (i = 0; i < 10; i++)

n[i] = i + 100; // set element at location i to value i + 100

for (i = 0; i < 10; i++) // output each array element's value

 cout<<n[i]<<" ";

 }

Output: ??

Example:

45

 #include <iostream.h>

int foo [7] = {16, 2, 77, 40, 12071, 1, 33};

int n, result=0;

int main ()

{

 for (n=0 ; n<7 ; n ++)

 {

 result += foo[n];

 }

 cout << result;

 return 0;

}

 Output: ??

http://www.cplusplus.com/doc/tutorial/arrays/

46

Lecture 9

Two Dimension Array

The simplest form of the multidimensional array is the two-dimensional array. A

two-dimensional array is, in essence, a list of one-dimensional arrays. To declare

a two-dimensional integer array of [x, y] you would write something as follows:

Syntex:

 type arrayName [x][y];

Where type can be any valid C++ data type and arrayName will be a valid C++

identifier.

 A two-dimensional array can be think as a table, which will have x number of

rows and y number of columns.

 A two-dimensional array a, which contains three rows and four columns can be

shown as below:

 Thus, every element in array a is identified by an element name of the

form a[i][j], where a is the name of the array, and i and j are the subscripts

that uniquely identify each element in a.

 Total number of elements that can be stored in a multidimensional array can be

calculated by multiplying the size of all the dimensions. For example:

 The array : int x[10][20] can store total (10*20) = 200 elements.

47

Example :

int a[3][5] ; // declaration of an integer array a with 3 rows and 5 columns

float tab[2][6] ; // declaration of an float array a with 2 rows and 6 columns

Initializing Two-Dimensional Arrays
Multi dimensioned arrays may be initialized by specifying bracketed values for

each row. Following is an array with 3 rows and each row have 4 columns.

int a[3][4] = {
 {0, 1, 2, 3} , /* initializers for row indexed by 0 */
 {4, 5, 6, 7} , /* initializers for row indexed by 1 */
 {8, 9, 10, 11} /* initializers for row indexed by 2 */
 };

0 1 2 3

4 5 6 7

8 9 10 11

 The nested braces, which indicate the intended row, are optional. The following

initialization is equivalent to previous example :

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

Accessing Two-Dimensional Array Elements
An element in 2-dimensional array is accessed by using row index and column

index of the array. For example :

The element in the position a [2][2] is 10

The element in the position a [1][3] is 7

 To output all the elements of a Two-Dimensional array we can use nested for loops.

We will require two for loops. One to traverse the rows and another to traverse

columns.

48

Example: write c++ program to print the elements of the array buf [5][2], which

initialized as : buf [5][2] ={ 0, 0, 1, 2, 2, 4, 3, 6, 4, 8 }.

Example : Write c++ program to read an integer elements of array with

size(4x4), then find the summation of these elements, finally print these

elements.

 #include <iostream.h>

int main ()

{

int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}}; // array with 5 rows and 2 col.

for (int i = 0; i < 5; i++) // output each array element's value

for (int j = 0; j < 2; j++)

 cout << a[i][j]<< endl;

 }

49

Lecture 10

Functions

Function is a group of statements that together perform a task. Every C++

program has at least one function, which is main(), and all the most trivial

programs can define additional functions.

You can divide up your code into separate functions. How you divide up your

code among different functions is up to you, but logically the division usually is

such that each function performs a specific task.

Function declaration tells the compiler about a function's name, return type,

and parameters. A function definition provides the actual body of the function.

Defining a Function
The general form of a C++ function definition is as follows:

return_type function_name (parameters)

{

 body of the function

}

 C++ function definition consists of a function header and a function body.

Here are all the parts of a function:

 Return Type: A function may return a value. The return_type is the data

type of the value the function returns. Some functions perform the desired

operations without returning a value. In this case, the return_type is the eyword

void.

 Function Name: This is the actual name of the function. The function name

and the parameter list together constitute the function signature.

50

 Parameters: When a function is invoked, you pass a value to the parameter.

This value is referred to as actual parameter or argument. The parameter list

refers to the type, order, and number of the parameters of a function.

Parameters are optional; that is, a function may contain no parameters.

 Function Body: The function body contains a collection of statements that

define what the function does.

Example:

Following is the source code for a function called max(). This function takes two

parameters num1 and num2 and returns the maximum between the two:

(1) Defining a Function

 // This function returning the max between two numbers

int max(int num1, int num2)

{
int result; // local variable declaration

if (num1 > num2)
result = num1;
else
result = num2;
return result;

}

51

(2) Function Declaration

 A function declaration has the following parts:
return_type function_name (parameter list);

 For the above defined function max(), following is the function declaration:

int max (int num1, int num2) ;

 Parameter names are not important in function declaration only their type is

required, so following is also valid declaration:

int max (int, int) ;

 you should declare the function at the top of the file calling the function.

(3) Calling a Function

 To use a function, you will have to call or invoke that function.

 When a program calls a function, program control is transferred to the called

function.

 A called function performs defined task and when it’s return statement is

executed or when its function-ending closing brace is reached, it returns program

control back to the main program.

 To call a function, you simply need to pass the required parameters along with

function name, and if function returns a value, then you can store returned value.

For example:

52

 #include <iostream.h>

int max(int num1, int num2); // function declaration

int main ()
{
int a = 100, b = 200 , ret; // local variable
declaration:

ret = max(a, b); // calling a function max

cout << "Max value is : " << ret << endl;

return 0;
}

// This function returning the max between two numbers

int max(int num1, int num2)

{
int result; // local variable declaration

if (num1 > num2)
 result = num1;
else
 result = num2;

return result;
}

53

Example : Write C++ program to calculate the squared value of a given integer

number passed from the main function. Use this function in the program to

calculate the squares of numbers from 1 to 10.

Example: Write a function to find the largest integer number among three integer

numbers entered by the user in the main function.

 #include <iostream.h>

int square(int y); // function declaration

// This function to calculate the square value of number

54

Example: Write C++ program to create a simple calculator to (add, subtract,

multiply and divide) using function.

#include <iostream.h>
int max(int , int, int) ; // function declaration

55

 # include <iostream.h>

 float calc(float x, float y, char op) ; // function declaration

int main()

{ char op;

 float num1, num2, result;

 cout << "Enter operator either + or - or * or /: ";

 cin >> op;

 cout << "Enter two numbers: ";

 cin >> num1 >> num2;

 result= calc(num1, num2, op); // calling function

 cout<<"the output is :"<< result;

}

float calc(float x, float y, char op) // function definition

{

float z;

if (op == '+') {

 z= x + y;

 return z; }

if (op == '-') {

 z= x - y;

 return z; }

if (op == '*') {

 z= x * y;

 return z; }

if (op == '/') {

 z= x / y;

 return z; }

else {

cout << "Error! operator is not correct";

return 0;

} }

56

 Scope of variables

Scope is a region of a program. Variable Scope is a region in a program where a

variable is declared and used. Variables are thus of two types depending on the

region where these are declared and used.

1. Local Variables :

Variables that are declared inside a function or block are local

variables. They can be used only by statements that are inside

that function or block of code. Local variables are not known to

functions outside their own. Following is the example using local

variables .

#include <iostream>

using namespace std;

 int main () {

 int a, b; // Local variable declaration:

 int c;

 a = 10;

 b = 20;

 c = a + b;

 cout << c;

 return 0;

}

57

2. Global Variables

Global variables are defined outside of all the functions, usually

on top of the program. The global variables will hold their value

throughout the life-time of your program.

A global variable can be accessed by any function. That is, a

global variable is available for use throughout your entire

program after its declaration. Following is the example using

global and local variables.

#include <iostream.h>

 void func1(void); // declaration function

 int g =10; // Global variable declaration:

 int main{)(

 func1)(; // call function

 g = 30;

 cout << g << endl;

 return 0;

}

void func1)(// function definition

 {

 g = 20;

 cout << g << endl;

}

