
Chapter 1

Numerical Methods for the Root

Finding Problem

Oct. 11, 2011 HG

1.1 A Case Study on the Root-Finding Problem: Kepler’s Law

of Planetary Motion

The root-finding problem is one of the most important computational problems. It arises in

a wide variety of practical applications in physics, chemistry, biosciences, engineering,

etc. As a matter of fact, determination of any unknown appearing implicitly in scientific

or engineering formulas gives rise to a root-finding problem. We consider one such simple

application here.

One of the classical laws of planetary motion due to Kepler says that a planet revolves around

the sun in an elliptic orbit as shown in the figure below :

Suppose one needs to find the position (x, y) of the planet at time t. This can be determined

by the following formula:

x = a cos(E − e)

y = a
√
1− e2 sinE

where

e = The eccentricity of the Ellipse

E = Eccentric anomaly

1
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Figure 1.1: A planet in elliptic orbit around the sun.
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To determine the position (x, y), one must know how to compute E, which can be computed

from Kepler’s equation of motion:

M = E − e sin(E), 0 < e < 1,

where M is the mean anomaly. This equation, thus, relates the eccentric anomaly, E to the

mean anomaly, M . Thus to find E we can solve the nonlinear equation:

f(E) = M − E + e sin(E) = 0

The solution of such an equation is the subject of this chapter.

A solution of this equation with numerical values of M and e using several different methods

described in this Chapter will be considered later.

1.2 Introduction

As the title suggests, the Root-Finding Problem is the problem of finding a root of the

equation f(x) = 0, where f(x) is a function of a single variable x. Specifically, the problem is

stated as follows:

The Root-Finding Problem

Given a function f(x). Find a number x = ξ such that f(ξ) = 0.
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Definition 1.1. The number x = ξ such that f(ξ) = 0 is called a root of the equation f(x) = 0

or a zero of the function f(x).

As seen from our case study above, the root-finding problem is a classical problem and dates back

to the 18th century. The function f(x) can be algebraic or trigonometric or a combination

of both.

1.2.1 Analytical versus Numerical Methods

Except for some very special functions, it is not possible to find an analytical expression for

the root, from where the solution can be exactly determined. This is true for even commonly

arising polynomial functions. A polynomial Pn(x) of degree n has the form:

Pn(x) = a0 + a1(x) + a2x
2 + · · · + anx

n (an 6= 0)

The Fundamental Theorem of Algebra states that a polynomial Pn(x) of degree n(n ≥ 1)

has at least one zero.

A student learns very early in school, how to solve a quadratic equation: P2(x) = ax2 + bx+ c

using the analytical formula:

x =
−b±

√
b2 − 4ac

2a
.

(see later for a numerically effective version of this formula.)

Unfortunately, such analytical formulas do not exist for polynomials of degree 5 or greater. This

fact was proved by Abel and Galois in the 19th century.

Thus, most computational methods for the root-finding problem have to be iterative in nature.

The idea behind an iterative method is the following:

Starting with an initial approximation x0, construct a sequence of iterates {xk} using an itera-

tion formula with a hope that this sequence converges to a root of f(x) = 0.

Two important aspects of an iterative method are: convergence and stopping criterion.

• We will discuss the convergence issue of each method whenever we discuss such a method in

this book.

• Determining an universally accepted stopping criterion is complicated for many reasons.

Here is a rough guideline, which can be used to terminate an iteration in a computer program.
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Stopping Criteria for an Iterative Root-Finding Method

Accept x = ck as a root of f(x) = 0 if any one of the following criteria is satisfied:

1. |f(ck)| ≤ ǫ (The functional value is less than or equal to the tolerance).

2.
|ck−1−ck|

|ck| ≤ ǫ (The relative change is less than or equal to the tolerance).

3. The number of iterations k is greater than or equal to a predetermined number, say N .

1.3 Bisection-Method

As the title suggests, the method is based on repeated bisections of an interval containing the

root. The basic idea is very simple.

Basic Idea:

Suppose f(x) = 0 is known to have a real root x = ξ in an interval [a, b].

• Then bisect the interval [a, b], and let c = a+b
2 be the middle point of [a, b]. If c is the

root, then we are done. Otherwise, one of the intervals [a, c] or [c, b] will contain the root.

• Find the one that contains the root and bisect that interval again.

• Continue the process of bisections until the root is trapped in an interval as small as

warranted by the desired accuracy.

To implement the above idea, we must know in each iteration: which of the two intervals contain

the root of f(x) = 0.

The Intermediate Value Theorem of calculus can help us identify the interval in each

iteration. For a proof of this theorem, see any calculus book (e.g. Stewart []).

Intermediate Value Theorem (IVT)

Suppose

(i) f(x) is continuous on a closed interval [a, b],
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and

(ii) M is any number between f(a) and f(b).

Then

there is at least one number c in [a, b] such that f(c) = M .

Consequently, if

(i) f(x) is continuous on [a, b],

and

(ii) f(a) and f(b) are of opposite signs.

Then there is a root x = c of f(x) = 0 or in [a, b].

Algorithm 1.2 (The Bisection Method for Rooting-Finding).

Inputs: f(x) - The given function.

a0, b0 - The two numbers such that f(a0)f(b0) < 0.

Output: An approximation of the root of f(x) = 0 in [a0, b0].

For k = 0, 1, 2, . . ., do until satisfied:

• Compute ck = ak+bk
2 .

• Test, using one of the criteria stated in the next section, if ck is the desired root. If so,

stop.

• If ck is not the desired root, test if f(ck)f(ak) < 0. If so, set bk+1 = ck and ak+1 = ak.

Otherwise, set ak+1 = ck, bk+1 = bk.

End.

Example 1.3

Find the positive root of f(x) = x3 − 6x2 + 11x− 6 = 0 using Bisection method.

Solution:

Finding the interval [a, b] bracketing the root:
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Since the bisection method finds a root in a given interval [a, b], we must try to find that interval

first. This can be done using IVT.

Choose a0 = 2.5 and b0 = 4.

We now show that both hypotheses of IVT are satisfied for f(x) in [2.5, 4].

(i) f(x) = x3 − 6x2 + 11x− 6 is continuous on [2.5, 4].

(ii) f(2.5)f(4) < 0.

Thus, by IVT, there is a root of f(x) = 0 in [2.5, 4].

Input Data:

{

(i) f(x) = x3 − 6x2 + 11x− 6

(ii) a0 = 2.5, b0 = 4

Solution.

Iteration 1. (k = 0):

c0 =
a0 + b0

2
=

4 + 2.5

2
=

6.5

2
= 3.25.

Since f(c0)f(a0) = f(3.25)f(2.5) < 0, set b1 = c0, a1 = a0.

Iteration 2. (k = 1):

c1 =
3.25 + 2.5

2
= 2.8750.

Since f(c1)f(a1) > 0, set a2 = 2.875, b2 = b1.

Iteration 3. (k = 2):

c2 =
a2 + b2

2
=

2.875 + 3.250

2
= 3.0625.

Since f(c2)f(a2) = f(3.0625)f(2.875) < 0, set b3 = c2, a3 = a2.

Iteration 4. (k = 3):

And c3 = a3+b3
2 = 2.875+3.0625

2 = 2.9688.

It is clear that the iterations are converging towards the root x = 3.

Note:
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1. From the statement of the bisection algorithm, it is clear that the algorithm always con-

verges.

2. The example above shows that the convergence, however, can be very slow.

3. Computing ck: It might happen that at a certain iteration k, computation of ck = at+bk
2

will give overflow. It is better to compute ck as:

ck = ak +
bk − ak

2
.

Stopping Criteria

Since this is an iterative method, we must determine some stopping criteria that will allow the

iteration to stop. Here are some commonly used stopping criteria.

Let ǫ be the tolerance; that is, we would like to obtain the root with an error of at most of ǫ.

Then

Note: Criterion 1 can be misleading since it is possible to have |f(ck)| very small, even if ck is

not close to the root. (Do an example to convince yourself that it is true).

Number of Iterations Needed in the Bisection Method to Achieve a Certain Accu-

racy

Let’s now find out what is the minimum number of iterations N needed with the bisection

method to achieve a certain desired accuracy.

Criterion 3 can be used to answer this.

The interval length after N iterations is b0−a0
2N

. So, to obtain an accuracy of ǫ, we must have
b0−a0
2N

≤ ǫ.

That is,

2−N (b0 − a0) ≤ ǫ,

or 2N ≥ b0 − a0
ǫ

,

or N ln 2 ≥ ln(b0 − a0)− ln ǫ, (Taking the natural log on both sides.)

or N ≥ ln(b0 − a0)− ln ǫ

2
.

Theorem 1.4. The number of iterations N needed in the bisection method to obtain an

accuracy of ǫ is given by
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N ≥ log10(b0 − a0)− log10(ǫ)

log10 2
. (1.1)

Remark: Note the number N depends only on the initial interval [a0, b0] bracketing the root.

Example 1.5

Find the minimum number of iterations needed by the bisection algorithm to approximate the

root x = 3 of x3 − 6x2 + 11x− 6 = 0 with error tolerance 10−3.

Input Data:
{

End points of the interval: a = 2.5, b = 4

Error tolerance: t = 10−3

Formula to be used: Inequality (1.1).

Substituting the values of a0 and b0 in the above formula, we get

N ≥ log10(1.5) − log10(10
−3)

log10 2
=

log10(1.5) + 3

log10(2)
= 10.5507.

Thus, a minimum of 11 iterations will be needed to obtain the desired accuracy using the

bisection method.

Remarks: (i) Since the number of iterations N needed to achieve a certain accuracy depends

upon the initial length of the interval containing the root, it is desirable to choose the initial

interval [a0, b0] as small as possible.

1.3.1 A Stopping Criterion for the Bisection Method

Besides the stopping criteria mentioned in the Introduction, a suitable stopping criterion, spe-

cific for the bisection method, will be:

Stop the bisection iteration if for any k:

b− a

2k
≤ ǫ

(The length of the interval after k iterations is less than or equal to the tolerance ǫ.)

1.4 Fixed-Point Iteration

Definition 1.6. A number ξ is a fixed point of a function g(x) if g(ξ) = ξ.
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Suppose that the equation f(x) = 0 is written in the form x = g(x); that is,

f(x) = x− g(x) = 0.

Then any fixed point ξ of g(x) is a root of f(x) = 0 because

f(ξ) = ξ − g(ξ) = ξ − ξ = 0.

Thus, a root of f(x) = 0 can be found by finding a fixed point of x = g(x), which corresponds

to f(x) = 0.

Finding a root of f(x) = 0 by finding a fixed point of x = g(x) immediately suggests an iterative

procedure of the following type.

Start with an initial guess x0 of the root and form a sequence {xk} defined by

xk+1 = g(xk), k = 0, 1, 2, . . .

If the sequence {xk} converges, then lim
k→∞

xk = ξ will be a root of f(x) = 0.

The question therefore rises:

Given f(x) = 0 in [a, b].

How do we write f(x) = 0 in the form x = g(x) such that the sequence {xk} is defined by

xk+1 = g(xk);

will converge to the root x = ξ for any choice of the initial approximation x0?

The simplest way to write f(x) = 0 in the form x = g(x) is to add x on both sides, that is,

x = f(x) + x = g(x).

But it does not very often work.

To convince yourself, consider Example 1.3 again. Here,

f(x) = x3 − 6x2 + 11x− 6 = 0.

Define

g(x) = x+ f(x) = x3 − 6x2 + 12x− 6.

We know that there is a root of f(x) in [2.5, 4]; namely x = 3.
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Let’s start the iteration xk+1 = g(xk) with x0 = 3.5.

Then we have:

x1 = g(x0) = g(3.5) = 5.3750,

x2 = g(x1) = g(5.3750) = 40.4434,

x3 = g(x2) = g(40.4434) = 5.6817 × 104,

and x4 = g(x3) = g(5.6817 × 104) = 1.8340 × 1014.

The sequence {xk} is clearly diverging.

The convergence and divergence of the fixed-point iteration are illustrated by the following

graphs.

Figure 1.2: Convergence of the Fixed-Point Iteration

Fixed-Point

y
=
x

x2 x1 x0

A Sufficient Condition for Convergence

The following theorem gives a sufficient condition on g(x) which ensures the convergence of the

sequence {xk} with any initial approximation x0 in [a, b].

Theorem 1.7 (Fixed-Point Iteration Theorem). Let f(x) = 0 be written in the form

x = g(x). Assume that g(x) satisfies the following properties:

(i) For all x in [a, b], g(x) ∈ [a, b]; that is g(x) takes every value between a and b.
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Figure 1.3: Divergence of the Fixed-Point Iteration

Fixed-Point
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(ii) g′(x) exists on (a, b) with the property that there exists a positive constant 0 < r < 1

such that

|g′(x)| ≤ r,

for all x in (a, b).

Then

(i) there is a unique fixed point x = ξ of g(x) in [a, b],

(ii) for any x0 in [a, b], the sequence {xk} defined by

xk+1 = g(xk), k = 0, 1, · · ·

converges to the fixed point x = ξ; that is, to the root ξ of f(x) = 0.

The proof of the fixed-point theorem will require two important theorems from calculus: Initial

Value Theorem (IVT) and the Mean Value Theorem (MVT). The IVT has been stated

earlier. We will now state the MVT.

The Mean Value Theorem (MVT)

Let f(x) be a function such that

(i) it is continuous on [a, b]
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(ii) it is differentiable on (a, b)

Then there is a number c in (a, b) such that

f(b)− f(a)

b− a
= f ′(c)

Proof of the Fixed-Point Theorem:

The proof comes in three parts: Existence, Uniqueness, and Convergence.

Since a fixed point of g(x) is a root of f(x) = 0, this amounts to proving that there is a fixed

point in [a, b] and it is unique.

Proof of Existence

First, consider the case where either g(a) = a or g(b) = b.

• If g(a) = a, then x = a is a fixed point of g(x). Thus, x = a is a root of f(x) = 0.

• If g(b) = b, then x = b is a fixed point of g(x). Thus x = b is a root of f(x) = 0.

Next, consider the general case where the above assumptions are not true. That is, g(a) 6= a

and g(b) 6= b.

In such a case, g(a) > a and g(b) < b. This is because, by Assumption 1, both g(a) and g(b)

are in [a, b], and since g(a) 6= a and g(b) 6= b, g(a) must be greater than a and g(b) must be

greater than b.

Now, define the function h(x) = g(x) − x. We will now show that h(x) satisfies both the

hypotheses of the Intermediate Value Theorem (IVT).

In this context, we note

(i) since g(x) is continuous by our assumptions, h(x) is also continuous on [a, b]. (Hypothesis

(i) is satisfied)

(ii) h(a) = g(a)− a > 0 and h(b) = g(b) − b < 0. (Hypothesis (ii) is satisfied)
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Since both hypotheses of the IVT are satisfied, by this theorem, there exists a number c in [a, b]

such that

h(c) = 0

this means g(c) = c.

That is, x = c is a fixed point of g(x). This proves the Existence part of the Theorem.

Proof of Uniqueness (by contradiction):

We will prove the uniqueness by contradiction. Our line of proof will be as follows:

We will first assume that there are two fixed points of g(x) in [a, b] and then show that this

assumption leads to a contradiction.

Suppose ξ1 and ξ2 are two fixed points in [a, b], and ξ1 6= ξ2.

The proof is based on the Mean Value Theorem applied to g(x) in [ξ1, ξ2].

In this context, note that g(x) is differentiable and hence, continuous on [ξ1, ξ2].

So, by MVT, we can find a number c in (ξ1, ξ2) such that

g(ξ2)− g(ξ1)

(ξ2 − ξ1)
= g′(c).

Since g(ξ1) = ξ1, and g(ξ2) = ξ2, (because they are fixed points of g(x)), we get

ξ2 − ξ1
ξ2 − ξ1

= g′(c).

That is, g′(c) = 1, which is a contradiction to our Assumption 2. Thus, ξ1 can not be different

from ξ2, this proves the uniqueness.

Proof of Convergence:

Let ξ be the root of f(x) = 0. Then the absolute error at step k + 1 is given by

ek+1 = |ξ − xk+1|. (1.2)

To prove that the sequence converges, we need to show that limk→∞ ek+1 = 0.
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To show this, we apply the Mean Value Theorem to g(x) in [xk, ξ]. Since g(x) also satisfies

both the hypotheses of the MVT in [xk, ξ], we get

g(ξ) − g(xk)

ξ − xk
= g′(c) (1.3)

where xk < c < ξ.

Now, x = ξ is a fixed point of g(x), so we have (by definition):

(i) g(ξ) = ξ.

Also, from the iteration x = g(x), we have

(ii) xk+1 = g(xk).

So, from ( ), we get
ξ − xk+1

ξ − xk
= g′(c)

Taking absolute values on both sides we have

|ξ − xk+1|
|ξ − xk|

= |g′(c)| (1.4)

or
ek+1

ek
= |g′(c)|. (1.5)

Since |g′(c)| ≤ r, we have ek+1 ≤ rek.

Since the above relation ( ) is true for every k, we have ek ≤ rek−1. Thus, ek+1 ≤ r2ek−1.

Continuing in this way, we finally have ek+1 ≤ rk+1e0, where e0 is the initial error. (That is,

e0 = |x0 − ξ|).

Since r < 1, we have rk+1 → 0 as k → ∞.

Thus,

lim
k→∞

ek+1 = lim
k→∞

|xk+1 − ξ|

≤ lim
k→∞

rk+1e0 = 0

This proves that the sequence {xk} converges to x = ξ and that x = ξ is the only fixed point

of g(x).
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In practice, it is not easy to verify Assumption 1. The following corollary of the fixed-point

theorem is more useful in practice because the conditions here are more easily verifiable. We

leave the proof of the corollary as an [Exercise].

Corollary 1.8. Let the iteration function g(x) be such that

(i) it is continuously differentiable in some open interval containing the fixed point x = ξ,

(ii) |g′(ξ)| < 1.

Then there exists a number ǫ > 0 such that the iteration: xk+1 = g(xk) converges whenever x0

is chosen in |x0 − ξ| ≤ ǫ.

Example 1.9

Find a positive zero of x3 − 6x2 + 11x− 6 in [2.5, 4] using fixed-point iterations.

Input Data:
{

(i) f(x) = x3 − 6x2 + 11x− 6,

(ii) a = 2.5, b = 4.

Solution.

Step 1. Writing f(x) = 0 in the form x = g(x) so that both hypotheses of Theorem 1.7 are

satisfied.

We have seen in the last section that the obvious form: g(x) = x+ f(x) = x3 − 6x2 + 12x− 6

does not work.

Let’s now write f(x) = 0 in the form: x = 1
11(−x3 + 6x2 + 6) = g(x).

Then (i) for all x ∈ [2.5, 4], g(x) ∈ [2.5, 4] (Note that g(2.5) = 2.5341 and g(4) = 3.4545).

(ii) g′(x) = 1
11 (−3x2 + 12x) steadily decreases in [2.5, 4] and remains less than 1 for all x in

(2.5, 4). (Note that g′(2.5) = 1.0227 and g′(4) = 0.)

Thus, both hypotheses of Theorem 1.6 are satisfied. So, according to this theorem, for any x0

in [2.5, 4], the sequence {xk} should converge to the fixed point.

We now do a few iterations to verify this assertion. Starting with x0 = 3.5 and using the

iteration:

xk+1 = g(xk) = − 1
11(3x

2
k + 12xk)

(k = 0, 1, 2, . . . , 11)

We obtain:
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x0 = 3.5

x1 = g(x0) = 3.3295

x2 = g(x1) = 3.2367

x3 = g(x2) = 3.1772

x4 = g(xx) = 3.1359

x5 = g(x4) = 3.1059

x6 = g(x5) = 3.0835

x7 = g(x6) = 3.0664

x8 = g(x7) = 3.0531

x9 = g(x8) = 3.0427

x10 = g(x9) = 3.0344

x11 = g(x10) = 3.0278

The sequence is clearly converging to the root x = 3.

Example 1.10

Find a root of x− cos x = 0 in (0, π2 ).

Input Data: (i) f(x) = x− cos x

(ii) a = 0, b = π
2

Solution.

Write f(x) = 0 in the form x = g(x) so that xk+1 = g(xk) converges for any choice of x0 in

[0, π2 ]n :

From f(x) = x− cos x = 0, we obtain x = cos x.

Thus, if we take g(x) = cos x, then

(i) For all x in [0, π2 ], g(x) ∈ [0, π2 ]. (In particular, note that g(0) = cos(0) = 1 and g(π2 ) =

cos(π2 ) = 0).

(ii) g′(x) = − sinx. Thus, |g′(x)| < 1 in [0, π2 ].

Thus, both properties of g(x) of Theorem 1.6 are satisfied.

According to the Fixed-Point Iteration Theorem (Theorem 1.7), the iterations must converge

with any choice of x0 in [0, π2 ]. This is verified from the following computations.
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x0 = 0

x1 = cosxo = 1

x2 = cosx1 = 0.5403

x3 = cosx2 = 0.8576

...

x17 = 0.73956

x18 = cosx17 = 0.73955

1.5 The Newton Method

The Newton- method, described below, shows that there is a special choice of g(x) that will

allow us to readily use the results of Corollary 1.8.

Assume that f ′′(x) exists and is continuous on [a, b] and ξ is a simple root of f(x), that is,

f(ξ) = 0 and f ′(ξ) 6= 0.

Choose

g(x) = x− f(x)

f ′(x)
.

Then g′(x) = 1− (f ′(x))2−f(x)f ′′(x)
(f ′(x))2 = f(x)f ′′(x)

(f ′(x))2 .

Thus, g′(ξ) = f(ξ)f ′′(ξ)
(f ′(ξ))2

= 0, since f(ξ) = 0, and f ′(ξ) 6= 0.

Since g′(x) is continuous, this means that there exists a small neighborhood around the root

x = ξ such that for all points x in that neighborhood, |g′(x)| < 1.

Thus, if g(x) is chosen as above and the starting approximation x0 is chosen sufficiently close

to the root x = ξ, then the fixed-point iteration is guaranteed to converge.

This leads us to the following well-known classical method known as the Newton method.

Note: In many text books and literature, Newton’s Method is referred to as Newton’s

Method. See the article about this in SIAM Review (1996).

Algorithm 1.11 (The Newton Method).

Inputs: f(x) - The given function

x0 - The initial approximation

ǫ - The error tolerance

N - The maximum number of iterations



18 CHAPTER 1. NUMERICAL METHODS FOR THE ROOT FINDING PROBLEM

Output: An approximation to the root x = ξ or a message of failure.

Assumption: x = ξ is a simple root of f(x).

For k = 0, 1, · · · , do until convergence or failure.

• Compute f(xk), f
′(xk).

• Compute xk+1 = xk −
f(xk)

f ′(xk)
.

• Test for convergence or failure:

If |f(xk)| < ǫ,

or
|xk+1 − xk|

|xk|
< ǫ,

or k > N, stop.









stopping criteria.

End

Definition 1.12. The iterations xk+1 = xk − f(xk)
f ′(xk)

are called Newton’s iterations.

Example 1.13

Find a positive real root of cos x− x3 = 0.

Obtaining an initial approximation: Since cos x ≤ 1 for all x and for x > 1, x3 > 1, the

positive zero must lie between 0 and 1. So, let’s take x0 = 0.5.

Input Data:






(i) The function f(x) = cos x− x3

(ii) Initial approximation: x0 = 0.5

Formula to be used: xk+1 = xk − f(xk)
f ′(xk)

Solution.

Compute f ′(x) = − sinx− 3x2.

Iteration 1. k=0: x1 = x0 − f(x0)
f ′(x0)

= 0.5− cos(0.5)−(0.5)3

− sin(0.5)−3(0.5)2
= 1.1121.

Iteration 2. k=1: x2 = x1 − f(x1

f ′(x1)
= 0.9097.

Iteration 3. k=2: x3 = x2 − f(x2)
f ′(x2)

= 0.8672.

Iteration 4. k=3: x4 = x3 − f(x3)
f ′(x3)

= 0.8654.
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Iteration 5. k=4: x5 = x4 − f(x4)
f ′(x4)

= 0.8654.

Notes:

1. If none of the above criteria has been satisfied within a predetermined, say N , iterations,

then the method has failed after the prescribed number of iterations. In that case, one

could try the method again with a different x0.

2. A judicious choice of x0 can sometimes be obtained by drawing the graph of f(x), if

possible. However, there does not seem to exist a clear-cut guideline of how to choose

a right starting point x0 that guarantees the convergence of the Newton Method to a

desired root.

3. Starting point issues.

(a) If x0 is far from the solution, Newton’s method may diverge [Exercise].

(b) For some functions, some starting point may enter an infinite circle in the sense that

the sequence of iterations will oscillate without converging to a root [Exercise].

1.5.1 Some Familiar Computations Using Newton’s Method

Computing the Square Root of a Positive Number A:

Compute
√
A, where A > 0.

Computing
√
A is equivalent to solving x2 −A = 0. The number

√
A, thus, may be computed

by applying the Newton Method to f(x) = x2 −A.

Since f ′(x) = 2x, we have the following algorithm for computing the square root of a positive

number A.

Newton Iterations for Computing
√
A

Input: A - A positive number

Output: An approximation to
√
A

Step 1. Choose an initial approximation x0 to
√
A.

Step 2. Compute the successive approximations {xk} as follows:

For k = 0, 1, 2, . . . , do until convergence

xk+1 = xk −
x2k −A

2xk
=

x2k +A

2xk
End
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Example 1.14 Approximate the Positive Square Root of 2 Using Newton’s

Method with x0 = 1.5 (Do three iterations).

Input Data: A = 2, x0 = 1.5

Formula to be Used: xk+1 =
x2
k
+A

2xk

, k = 0, 1, and 2.

Solution.

Iteration 1. x1 =
x2
0
+A

2x0
= (1.5)2+2

3 = 1.4167,

Iteration 2. x2 =
x2
1
+A

2x1
= 1.4142,

Iteration 3. x3 =
x2
2
+A

2x2
= 1.4142.

Computing the nth Root

It is easy to see that the above Newton- Method to compute
√
A can be easily generalized to

compute n
√
A. In this case, f(x) = xn −A, f ′(x) = nxn−1.

Thus, Newton’s iterations in this case are:

Newton’s Iteration for the nth Root

xk+1 = xk −
xnk −A

nxn−1
k

=
(n− 1)xnk +A

nxn−1
k

.

Finding the Reciprocal of a Nonzero Number A

The problem here is to compute 1
A
, where A 6= 0. Since f ′(x) = − 1

x2 , the Newton iteration in

this case is:

Thus, computing 1
A

is equivalent to finding the root of the equation: f(x) = 1
x
−A.

xk+1 = xk −
f(xk)

f ′(xk)
= xk −

1
xk

−A

− 1
x2
k

= xk(2−Axk).
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The Newton Iteration for Computing 1
A

Input: A - A nonzero number

Output: An approximation to 1
A

Step 1. Choose an initial approximation x0 to 1
A
.

Step 2. For k = 0, 1, 2, . . . do until convergence

xk+1 = xk(2−Axk)

End

Example 1.15

Approximate 1
3 by Newton method with x0 = 2.5 (Do three iterations.)

Input Data:

A = 3, x0 = 0.25

Formula to be Used:

xk+1 = xk(2−Axk), k = 0, 1, 2

Solution.

Iteration 1. x1 = x0(2−Ax0) = 0.25(2 − 3× 0.025) = 0.3125

Iteration 2. x2 = x1(2−Ax1) = 0.3125(2 − 3× 0.3125) = 0.3320

Iteration 3. x3 = x2(2−Ax2) = 0.3320(2 − 3× 0.3320) = 0.3333

Note that 0.3333 is the 4-digit approximation of 1
3 (correct up to 4 decimal figures).

1.5.2 A Geometric Interpretation of the Newton- Method

• The first approximation x1 can be viewed as the x-intercept of the tangent line to the

graph of f(x) at (x0, f(x0)).

• The second approximation x2 is the x-intercept of the tangent line to the graph of f(x)

at (x1, f(x1)) and so on.
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Figure 1.4: Graphical Representation of the Newton Method.

x0
x2

x1

f(x0)

f(x1)

ξ

tangent to f(x0)

tangent to f(x1)

1.5.3 The Secant Method

A major disadvantage of the Newton Method is the requirement of finding the value of the deriva-

tive of f(x) at each approximation. There are functions for which this job is either extremely

difficult (if not impossible) or time consuming. A way out is to approximate the derivative by

knowing the values of the function at that and the previous approximation. Knowing f(xk)

and f(xk−1), we can approximate f ′(xk) as:

f ′(xk) ≈
f(xk)− f(xk−1)

xk − xk−1
.

Then, the Newton iterations in this case become:

xk+1 = xk −
f(xk)

f ′(xk)

≈ xk −
f(xk)(xk − xk−1)

f(xk)− f(xk−1)
.
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This consideration leads to the Secant method.

Algorithm 1.16 (The Secant Method).

Inputs: f(x) - The given function

x0, x1 - The two initial approximations of the root

ǫ - The error tolerance

N - The maximum number of iterations

Output: An approximation of the exact solution ξ or a message of failure.

For k = 1, 2, · · · , until the stopping criteria is met,

• Compute f(xk) and f(xk−1).

• Compute the next approximation: xk+1 = xk − f(xk)(xk−xk−1)
f(xk)−f(xk−1)

.

• Test for convergence or maximum number of iterations: If |xk+1 − xk| < ǫ or if k > N ,

Stop.

End

Note: The secant method needs two approximations x0 and x1 to start with, whereas the

Newton method just needs one, namely, x0.

Example 1.17

Approximate the Positive Square Root of 2, choosing x0 = 1.5 and x1 = 1 (Do four iterations).

Input Data:







The function f(x) = x2 − 2

Initial approximations: x0 = 1.5, x1 = 1

Formula to be Used: xk+1 = xc − f(xk)(xk−xk−1)
f(xk)−f(xk−1)

Solution.

Iteration 1. (k = 1). Compute x2 from x0 and x1:

x2 = x1 −
f(x1)(x1 − x0)

f(x1)− f(x0)

= 1− (−1)(−.5)

−1− .25
= 1 +

.5

1.25
= 1.4,
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Iteration 2. (k = 2). Compute x3 from x1 and x2:

x3 = x2 −
f(x2)(x2 − x1)

f(x2)− f(x1)

= 1.4 − (−0.04)(0.4)

(−0.04) − (−1)

= 1.4 + 0.0167

= 1.4167,

Iteration 3. (k = 3). Compute x4 from x2 and x3:

x4 = x3 −
f(x3)(x3 − x2)

f(x3)− f(x2)

= 1.4142,

Iteration 4. (k = 4). Compute x5 from x3 and x4:

and

x5 = x4 −
f(x4)(x4 − x3)

f(x4)− f(x3)
= 1.4142.

Note: By comparing the results of this example with those obtained by the Newton method

Example 1.14, we see that

it took 4 iterations by the secant method to obtain a 4-digit accuracy of
√
2 = 1.4142; whereas

for the Newton method, this accuracy was obtained just after 2 iterations.

In general, the Newton method converges faster than the secant method. The exact rate of

convergence of these two and the other methods will be discussed in the next section.

1.5.4 A Geometric Interpretation of the Secant Method

• x2 is the x-intercept of the secant line passing through (x0, f(x0)) and (x1, f(x1)).

• x3 is the x-intercept of the secant-line passing through (x1, f(x1)) and (x2, f(x2)).

• And so on.

Note: That is why the method is called the secant method.

1.6 The Method of False Position (The Regular Falsi Method)

In the Bisection method, every interval under consideration is guaranteed to have the desired

root x = ξ. That is why the Bisection method is often called a bracket method, because every
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Figure 1.5: Geometric Interpretation of the Secant Method

(x1, f(x1))

x2

x1x = ξx0

(x0, f(x0))

(x2, f(x2))

interval brackets the root. However, the Newton method and the secant method are not bracket

methods in that sense, because there is no guarantee that the two successive approximations

will bracket the root. Here is an example.

Example 1.18

(The Secant Method does not bracket the root.)

Compute a zero of tan(πx)−6 = 0, choosing x0 = 0, and x1 = 0.48, using the Secant Method.

(Note that ξ = 0.44743154 is a root of f(x) = 0 lying in the interval [0, 0.48]).

Iteration 1. (k = 1). Compute x2:

x2 = x1 − f(x1)
(x1−x0)

f(x1)−f(x0)
= 0.181194.

Iteration 2. (k = 2). Compute x3:

x1 = 0.48, x2 = 0.181194. (Two starting initial approximations for Iteration 2.)

x3 = x2 − f(x2)
(x2−x1)

f(x2)−f(x1)
= 0.286187

Iteration 3. (k = 3). Compute x4: x2 = 0.181194, x3 = 0.286187. (Two starting initial

approximations for Iteration 3.)

x4 = x3 − f(x3)
(x3−x2)

f(x3)−f(x2)
= 1.091987.

Clearly, the iterations are diverging, despite of the fact of the initial interval [0, 0.48]
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brackets the root.

However, the secant method can easily be modified to make it a bracket method. The idea is as

follows:

Modification of the Secant Method to Make it a Bracket Method: Method of False

Positives:

• Choose the initial approximations x0 and x1 such that f(x0) f(x1) < 0, ensuring that the

root is in [x0, x1].

• Compute x2 as in the Secant method; that is, take x2 as the x-intercept of the secant line

passing through x0 and x1.

• Compute x3 out of the three approximation x0, x1, and x2 as follows:

First, compute f(x1)f(x2); if it is negative, then [x1, x2] brackets the root and x3 is

the x-intercept of the secant line joining (x1, f(x1)) and (x2, f(x2)) (as in the Secant

method). Otherwise, compute x3 as the x-intercept of the line joining (x0, f(x0)) and

(x2, f(x2)).

• Continue the process.

This yields a method called, the Method of False Position or the Method of Regula Falsi.

Algorithm 1.19 (The Method of False Position).

Input: f(x) - The given function

x0, x1 - The two initial approximations f(x0)f(x1) < 0.

ǫ - The tolerance

N - The maximum number of iterations

Output: An approximation to the root x = ξ.

Step 0. Set i = 1.

Step 1. Compute xi+1 = xi − f(xi)
(xi−xi−1)

f(xi)−f(xi−1)
.

If |xi+1−xi

xi
| < ǫ or i ≥ N , stop.

Step 2. If f(xi)f(xi+1) < 0, then set xi ≡ xi+1, and xi−1 ≡ xi.

Otherwise, set xi ≡ xi+1, xi−1 ≡ xi−1. Return to Step 0.

End
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Example 1.20

Consider again the previous example: (Example 1.18). Find the positive root of tan(πx)−6 =

0 in [0, 0.48], using the Method of False Position.

Input Data:







f(x) = tan(πx)− 6,

Initial approximation: x0 = 0, x1 = 0.48

Formula to be Used: xi+1 = xi − f(xi)
(xi−xi−1)

f(xi)−f(xi−1)

Solution.

Iteration 1. (Initial approximations for Iteration 1: x0 = 0, x1 = 0.48).

Step 1. x2 = x1 − f(x1)
x1−x0

f(x1)−f(x0)
= 0.181192

Step 2. f(x2)f(x1) < 0

Set x0 = 0.48, x1 = 0.181192.

Iteration 2. (Initial approximations for Iteration 2: x0 = 0.48, x1 = 0.181192).

Step 1. x2 = x1 − f(x1)
x1−x0

f(x1)−f(x0)
= 0.286186

Step 2. f(x2)f(x1) > 0

Set x0 = 0.48, x1 = 0.286186.

Iteration 3. (Initial approximations for Iteration 3: x0 = 0.48, x1 = 0.286186).

Step 1. x2 = 0.348981

Step 2. f(x2)f(x1) > 0

Set x0 = 0.48, x1 = 0.348981.

Iteration 4. (Initial approximations for Iteration 4: x0 = 0.48, x1 = 0.348981).

Step 1. x2 = 0.387053

Step 2. f(x2)f(x1) > 0

Iteration 5. (Initial approximations for Iteration 5: x0 = 0.48, x1 = 0.387053).

Step 1. x2 = 0.410305
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1.7 Convergence Analysis of the Iterative Methods

We have seen that the Bisection method always converges, and each of the methods: the

Newton Method, the Secant method, and the method of False Position, converges under certain

conditions. The question now arises:

When a method converges, how fast does it converge?

In other words, what is the rate of convergence? To this end, we first define:

Definition 1.21 (Rate of Convergence of an Iterative Method). Suppose that the se-

quence {xk} converges to ξ. Then the sequence {xk} is said to converge to ξ with the order of

convergence α if there exists a positive constant p such that

lim
k→∞

|xk+1 − ξ|
|xk − ξ|α = lim

k→∞
ek+1

eαk
= p.

• If α = 1, the convergence is linear

• If α = 2, the convergence is quadratic

• If 1 < α < 2, the convergence is superlinear

Using the above definition, we will now show:

• The rate of convergence of the fixed-point iteration is usually linear,

• The rate of convergence of the Newton method is quadratic,

• The rate of convergence of the Secant method is superlinear [Exercise].

Rate of Convergence of the Fixed-Point Iteration Method

Recall that in the proof of the Fixed-Point Iteration Theorem, we established the relation

ek+1 = |g′(c)|ek,

where c is a number between xk and ξ.

So, limk→∞
ek+1

ek
= limk→∞ |g′(c)|.

Since {xk} → ξ, and c is in (xk, ξ), it follows that limk→∞ |g′(c)| = |g′(ξ)|.
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This gives limk→∞
ek+1

ek
= |g′(ξ)|. Thus α = 1.

We, therefore, have

The fixed point iteration scheme has linear rate of convergence, when it converges.

Rate of Convergence of the Newton Method

To study the rate of convergence of the Newton Method, we need Taylor’s Theorem.

Taylor’s Theorem of order n

Suppose

(i) f(x) possesses continuous derivatives of order up to n+ 1 in [a, b],

(ii) p is a point in [a, b].

Then for every x in this interval, there exists a number c (depending upon x) between p and x

such that

f(x) = f(p) + f ′(p)(x− p) +
f ′(p)
2!

(x− p)2 + · · ·+ fn(p)

n!
(n− p)n +Rn(x),

where Rn(x), called the remainder after n terms, is given by:

Rn(x) =
f (n+1)(c)

(n + 1)!
(x− p)n+1.

Let’s choose a small interval around the root x = ξ. Then, for any x in this interval, we have,

by Taylor’s theorem of order 1, the following expansion of the function g(x):

g(x) = g(ξ) + (x− ξ)g′(ξ) +
(x− ξ)2

2!
g′′(ηk)

where ηk lies between x and ξ.

Now, for the Newton Method, we have seen that g′(ξ) = 0.
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So, setting g′(ξ) = 0 in the above expression, we have

g(x) = g(ξ) +
(x− ξ)2

2!
g′′(ηk),

or g(xk) = g(ξ) +
(xk − ξ)2

2!
g′′(ηk),

or g(xk)− g(ξ) =
(xk − ξ)2

2!
g′′(ηk).

Since g(xk) = xk+1, and g(ξ) = ξ, from the last equation, we have

xk+1 − ξ =
(xk − ξ)2

2!
g′′(ηk).

Or, ek+1 =
e2
k

2! ‖g′(ηk)‖. Taking the limit on both sides, lim
k→0

ek+1

e2k
=

1

2
‖g′′

(ηk)‖.

That is, |xk+1 − ξ| = |xk−ξ|2
2 |g′′(ηk)|.

Since ηk lies between x and ξ for every k, it follows that

lim
k→∞

ηk = ξ.

So, we have limk→∞
ek+1

e2
k

= lim |g′′(ηk)|
2 = |g′′(ξ)|

2 .

Convergence of Newton’s Method for a Single Root

• Newton’s Method has quadratic rate of convergence.

• The quadratic convergence roughly means that the accuracy gets doubled at each iteration.

Convergence of the Newton Method for a Multiple Root

The above proof depends on the assumption f ′(ξ) = 0; that is, f(x) has a simple root at x = ξ.

In case f(x) = 0 has a multiple root, the convergence is no longer quadratic.

It can be shown [Exercise] that the Newton method still converges, but the rate of convergence

is linear rather than quadratic. For example, given the multiplicity is 2, the error decreases by

a factor of approximately 1
2 with each iteration.
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The Rate of Convergence for the Secant Method

It can be shown that if the Secant method converges, then the convergence factor α is approxi-

mately 1.6 for sufficiently large k [Exercise].

This is said as “The rate of convergence of the Secant method is superlinear”.

1.8 A Modified Newton Method for Multiple Roots

Recall that the most important underlying assumption in the proof of quadratic convergence of

the Newton method was that f ′(x) is not zero at the approximation x = xk, and in particular

f ′(ξ) 6= 0. This means that ξ is a simple root of f(x) = 0.

The question, therefore, is: How can the Newton method be modified for a multiple root so that

the quadratic convergence can be retained?

Note that if f(x) has a root ξ of multiplicity m, then

f(ξ) = f ′(ξ) = f ′′(ξ) = · · · = f (m−1)(ξ) = 0,

where f (m−1)(ξ) denotes the (m− 1)th derivative of f(x) at x = ξ.

In this case f(x) can be written as

f(x) = (x− ξ)mh(x),

where h(x) is a polynomial of degree at most m− 2.

In case f(x) has a root of multiplicity m, it was suggested by Ralston and Robinowitz (1978)

that, the following modified iteration will ensure quadratic convergence in the Newton method,

under certain conditions [Exercise].

The Newton Iterations for Multiple Roots of Multiplicity m: Method I

xi+1 = xi −
mf(xi)

f ′(xi)

Since in practice, the multiplicity m is not known a priori, another useful modification is to

apply the Newton iteration to the function:

u(x) =
f(x)

f ′(x)
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in place of f(x).

Thus, in this case, the modified Newton iteration becomes xi+1 = xi − u(xi)
u′(xi)

.

Note that, since f(x) = (x− ξ)m h(x), u′(x) 6= 0 at x = ξ.

Since u′(xi) =
f ′(x)f ′(x)−f(x)f ′′(x)

[f ′(x)]2
we have

The Newton Iterations for Multiple Roots: Method II

xi+1 = xi −
f(xi)f

′(xi)
[f ′(xi)]2 − [f(xi)]f ′′(xi)

Example 1.22

Approximate the double root x = 0 of ex − x− 1 = 0, choosing x0 = 0.5. (Do two iterations.)

Figure 1.6: The Graph of f(x) = ex − x− 1.

Method I

Input Data:















(i) f(x) = ex − x− 1

(ii) Multiplicity of the roots: m = 2

(iii) Initial approximation: x0 = 0.5

Formula to be Used: xi+1 = xi − 2f(xi)
f ′(xi)

Solution.

Iteration 1. (i = 0). Compute x1:

x1 = 0.5− 2(e0.5 − 0.5 − 1)

(e0.5 − 1)
= .0415 = 4.15 × 10−2
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Iteration 2. (i = 1). Compute x2:

x2 = 0.0415 − 2(e0.0415 − 0.0415 − 1)

e0.0415 − 1
= .00028703 = 2.8703 × 10−4.

Method II

Input Data:







(i) f(x) = ex − x− 1,

(ii) Initial approximation: x0 = 0.5

Formula to be Used: xi+1 = xi − f(xi)f ′(xi)
(f ′(xi)2−f(xi)f ′′(xi))

Solution.

Compute the first and second derivatives of f(x): f ′(x) = ex − 1, f
′′

(x) = ex.

Iteration 1. (i = 0). Compute x1:

x1 = f(x0)f ′(x0)

(f ′(x0))2f(x0)f
′′ (x0)

= (e0.5−0.5−1)×(e0.5−1)
(e0.5)2×(e0.5−0.5−1)×e0.5

= 0.0493 = 4.93 × 10−2

Iteration 2. (i = 1). Compute x2:

x2 = f(x1)f ′(x1)

(f ′(x1))2f(x1)f
′′ (x1)

= (e0.0493−0.0493−1)×(e0.0493−1)
(e0.0493)2×(e0.0493−0.0493−1)×e0.0493

= 4.1180 × 10−4

1.9 The Newton Method for Polynomials

A major requirement of all the methods that we have discussed so far is the evaluation of f(x)

at successive approximations xk. Furthermore, Newton’s method requires evaluation of the

derivatives of f(x) at each iteration.

If f(x) happens to be a polynomial Pn(x) (which is the case in many practical applications),

then there is an extremely simple classical technique, known as Horner’s Method to compute

Pn(x) at x = z.

• The value Pn(z) can be obtained recursively in n-steps from the coefficients of the polyno-

mial Pn(x).
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• Furthermore, as a by-product, one can get the value of the derivative of Pn(x) at x = z;

that is P ′
n(z). Then, the scheme can be incorporated in the Newton Method to compute

a zero of Pn(x).

(Note that the Newton Method requires evaluation of Pn(x) and its derivative at successive

iterations).

1.9.1 Horner’s Method

Let Pn(x) = a0 + a1x+ a2x
2 + · · · + anx

n and let x = z be given.

We need to compute Pn(z) and P ′
n(z).

Let’s write Pn(x) as:

Pn(x) = (x− z) Qn−1 (x) + bo,

where Qn−1(x) = bnx
n−1 + bn−1 x

n−2 + · · ·+ b2x+ b1.

Thus, Pn(z) = b0.

Let’s see how to compute b0 recursively by knowing the coefficients of Pn(x)

From above, we have

a0 + a1x+ a2x
2 + · · ·+ anx

n = (x− z)(bnx
n−1 + bn−1 x

n−2 + · · ·+ b1) + bo

Comparing the coefficients of like powers of x from both sides, we obtain

bn = an

bn−1 − bnz = an−1

⇒ bn−1 = an−1 + bnz

...

and so on.

In general, bk − bk+1z = ak

⇒ bk = ak + bk+1z. k = n− 1, n− 2, . . . , 1, 0.

Thus, knowing the coefficients an, an−1, . . . , a1, a0 of Pn(x), the coefficients bn, bn−1, . . . , b1 of

Qn−1(x) can be computed recursively starting with bn = an, as shown above. That is,

bk = ak + bk+1z, k = n− 1, k = 2, . . . , 1, 0.
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Again, note that Pn(z) = b0. So, Pn(z) = b0 = a0 + b1 z.

That is, if we know the coefficients of a polynomial, we can compute the value of the polynomial

at a given point out of these coefficients recursively as shown above.

Algorithm 1.23 (Evaluating Polynomial: Pn(x) = a0+a1xp+a2x
2+ . . .+anx

n at x = z).

Input: (i) a0, a1, ..., an - The coefficients of the polynomial Pn(x).

(ii) z - The number at which Pn(x) has to be evaluated.

Output: b0 = Pn(z).

Step 1. Set bn = an.

Step 2. For k = n− 1, n− 2, . . . , 1, 0 do.

Compute bk = ak + bk+1z

Step 3. Set Pn(z) = b0

End

It is interesting to note that as a by-product of above, we also obtain P ′
n(z), as the following

computations show.

Computing P ′
n(z)

Pn(x) = (x− z)Qn−1(x) + b0

Thus, P ′
n(x) = Qn−1(x) + (x− z)Q′

n−1(x).

So, P ′
n(z) = Qn−1(z).

Write Qn−1(x) = (x− z)Rn−2(x) + c1

Substituting x = z, we get Qn−1(z) = c1.

To compute c1 from the coefficients of Qn−1(x) we proceed in the same way as before.

Let Rn−2(x) = cnx
n−2 + cn−1x

n−3 + · · ·+ c3x+ c2

Then from above we have

bnx
n−1 + bn−1x

n−2 + · · ·+ b2x+ b1 = (x− z)(cnx
n−2 + cn−1x

n−3 + · · ·+ c3x+ c2) + c1.
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Equating the coefficients of like powers on both sides, we obtain

bn = cn

⇒ cn = bn

bn−1 = cn−1 − zcn

⇒ cn−1 = bn−1 + zcn

...

b1 = c1 − zc2

⇒ c1 = b1 + zc2

Since b’s have already been computed (by Algorithm 1.23), we can obtain c’s from b’s.

Then, we have the following scheme to compute P ′
n(z):

Computing P ′
n(z)

Inputs: (i) b1, ..., bn - The coefficients of the polynomial Qn−1(x) obtained from the previ-

ous algorithm

(ii) z - The number at which P ′
3(x) has to be evaluated.

Output: c1 = Qn−1(z).

Step 1. Set cn = bn,

Step 2. For k = n− 1, n− 2, ...2, 1 do

Compute ck = bk + ck+1 z,

End

Step 3. Set P ′
n(z) = c1.

Example 1.24

Given P3(x) = x3 − 7x2 + 6x+ 5. Compute P3(2) and P ′
3(2) using Horner’s scheme.

Input Data:















(i) The coefficients of the polynomial: a0 = 5, a1 = 6, a2 = −7, a3 = 1

(ii) The point at which the polynomial and its derivative need to be evaluated: z = 2

(iii) The degree of the polynomial: n=3

Formula to be used:
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





(i) Computing bk’s from ak’s: bk = ak + bk+1z, k = n− 1, n− 2, . . . , 0;P3(z) = b0.

(ii) Computing ck’s from bk’s: ck = bk + ck+1z, k = n− 1, n− 2, . . . , 1;P ′
3(z) = c1

Solution.

• Compute P3(2).

Generate the sequence {bk} from {ak}:

b3 = a3 = 1

b2 = a2 + b3z = −7 + 2 = −5

b1 = a1 + b2z = 6− 10 = −4

b0 = a0 + b1z = 5− 8 = −3.

So, P3(2) = b0 = −3

• Compute P ′
3(2).

Generate the sequence {ck} from {bk}.

c3 = b3 = 1

c2 = b2 + c3z = −5 + 2 = −3

c1 = b1 + c2z = −4− 6 = −10.

So, P ′
3(2) = −10.

1.9.2 The Newton Method with Horner’s Scheme

We now describe the Newton Method for a polynomial using Horner’s scheme. Recall that the

Newton iteration for finding a root of f(x) = 0 is:

xk+1 = xk −
f(xk)

f ′(xk)

In case f(x) is a polynomial Pn(x) of degree n: f(x) = Pn(x) = a0 + a1x+ a2x
2 + · · · + anx

n,

the above iteration becomes:

xk+1 = xk −
Pn(xk)

P ′
n(xk)

If the sequence {bk} and {ck} are generated using Horner’s Scheme, at each iteration we then

have

xk+1 = xk −
b0
c1
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(Note that at the iteration k, Pn(xk) = b0 and P ′
n(xk) = c1).

Algorithm 1.25 (The Newton Method with Horner’s Scheme).

Input: a0, a1, · · · , an - The coefficients of Pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n.

x0 - The initial approximation

ǫ - The tolerance

N - The maximum number of iterations to be performed.

Output: An approximation of the root x = ξ or a failure message.

For k = 0, 1, 2, · · · , do

Step 1. z = xk, bn ≡ an, cn ≡ bn

Step 2. Computing b1 and c1

For j = n− 1, n − 2, · · · , 1 do

bj ≡ aj + z bj+1

cj ≡ bj + z cj+1

End.

Step 3. b0 = a0 + z b1 ] Computing Pn(xk) and P ′
n(xk)

Step 4. xk+1 = xk − b0/c1

Step 5. If |xk+1 − xk| < ǫ or k > N , stop.

End

Note:

1. The outer-loop corresponds to the Newton Method

2. The inner-loop and the statement b0 = a0 + zb1 correspond to the evaluation of Pn(x)

and its derivative P ′
n(x) at successive approximations.

Example 1.26

Find a root of P3(x) = x3 − 7x2 + 6x+ 5 = 0, using the Newton method and Horner’s scheme,

choosing x0 = 2 (Note that P3(x) = 0 has a root between 1.5 and 2).

Input Data:
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













(i) The coefficients of P3(x): a0 = 5, a1 = 6, a2 = −7, and a3 = 1.

(ii) The degree of the polynomial: n = 3.

(iii) Initial approximation: x0 = 2.

Solution.

Iteration 1. (k = 0). Compute x1 from x0:

x1 = x0 −
b0
c1

= 2− 3

10
=

17

10
= 1.7

Note that b0 = P3(x0) and c1 = P ′
3(x0) have already been computed in Example 1.23.

Iteration 2. (k = 1). Compute x2 from x1:

Step 1. z = x1 = 1.7, b3 = 1, c3 = b3 = 1

Step 2.


















b2 = a2 + z b3 = −7 + 1.7 = −5.3

c2 = b2 + z c3 = −5.3 + 1.7 = −3.6

b1 = a1 + z b2 = 6 + 1.7(−5.3) = −3.0100

c1 = b1 + z c2 = −3.01 + 1.7(−3.6) = −9.130 (Value of P ′
3(x1)).

Step 3. b0 = a0 + z b1 = 5 + 1.7(−3.0100) = −0.1170 (Value of P3(x1)).

Step 4. x2 = x1 −
b0
c1

= 1.7− 0.1170

9.130
= 1.6872

(The exact root, correct up to four decimal places is 1.6872 ).

1.10 The Müller Method: Finding a Pair of Complex Roots.

TheMüller Method is an extension of the Secant Method. It is conveniently used to approximate

a complex root of a real equation, using real starting approximations or just a real root.

Note that none of the methods: the Newton, the Secant, the Fixed Point iteration Methods, etc.

can produce an approximation of a complex root starting from real approximations.

The Müller Method is capable of doing so.

Given two initial approximations, x0 and x1 the successive approximations are computed as

follows:

• Approximating x2 from x0 and x1: The approximation x2 is computed as the x-

intercept of the secant line passing through (x0, f(x0)) and (x1, f(x1)).
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• Approximating x3 from x0, x1, and x2: Having (x0, f(x0)), (x1, f(x1)), and (x2, f(x2))

at hand, the next approximation x3 is computed as the x-intercept of the parabola passing

through these three points. Since a parabola can intersect the x-axis at two points, the

one closest to x2 is taken as x3.

• Thus, computing x3 from the starting approximations x0, x1, and x2 by Muller’s Method

consists of the following two steps:

Step 1. Find the parabola P passing through (x0, f(x0)), (x1, f(x1)), and (x2, f(x2)).

Step 2. Solve the quadratic equation representing the parabola P and take x3 as the

root closest to x2.

(Note that even when x0, x1, and x2 are real, x3 can be complex.)

• (Computing x4 and successive approximations.)

The process, of course, can be continued to obtain other successive approximations.

x4 is obtained by solving the quadratic equation representing the parabola P passing through

(x1, f(x1)), (x2, f(x2)), and (x3, f(x3)), and taking x4 as the one that is closest to x3; and so

on.

Remarks: Note that it is advisable to relabel the approximation at the beginning of each

iteration so that we need to store only 3 approximations per iteration.

Figure 1.7: Geometric Interpretation of the Müller Method

x0 x1 x2 x3
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Based on the above idea, we now give the details of how to obtain x3 starting from x0, x1, and

x2.

Let the equation of the parabola P be

P (x) = a(x− x2)
2 + b(x− x2) + c.

That is, P (x2) = c, and a and b are computed as follows:

Since P (x) passes through (x0, f(x0)), (x1, f(x1)), and (x2, (f(x2)), we have

P (x0) = f(x0) = a(x0 − x2)
2 + b(x0 − x2) + c

P (x1) = f(x1) = a(x1 − x2)
2 + b(x1 − x2) + c

P (x2) = f(x2) = c.

Knowing c = f(x2), we can now obtain a and b by solving the first two equations:

a(x0 − x2)
2 + b(x0 − x2) = f(x0)− c

a(x1 − x2)
2 + b(x1 − x2) = f(x1)− c.

]

Or
(

(x0 − x2)
2 (x0 − x2)

(x1 − x2)
2 (x1 − x2)

)(

a

b

)

=

(

f(x0)− c

f(x1)− c

)

.

Knowing a and b from above, we can now obtain x3 by solving P (x3) = 0.

P (x3) = a(x3 − x2)
2 + b(x3 − x2) + c = 0.

To avoid catastrophic cancellation (See Chapter 3), instead of using the traditional for-

mula, we use the following mathematical equivalent formula for solving the quadratic equation

ax2 + bx+ c = 0.

Solving the Quadratic Equation

ax2 + bx+ c = 0

x =
−2c

b±
√
b2 − 4ac

The sign in the denominator is chosen so that it is the largest in magnitude, guaranteeing that

x3 is closest to x2.
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To solve P (x3) = 0 using the above formula, we get

x3 − x2 =
−2c

b±
√
b2 − 4ac

or x3 = x2 +
−2c

b±
√
b2 − 4ac

.

Note: One can also give on explicit expressions for a and b as follows:

b =
(x0 − x2)

2 [f(x1)− f(x2)]− (x1 − x2)
2 [f(x0)− f(x2)]

(x0 − x2)(x1 − x2)(x0 − x1)

a =
(x1 − x2) [f(x0)− f(x2)]− (x0 − x2) [f(x1)− f(x2)]

(x0 − x2)(x1 − x2)(x0 − x1)
.

However, for computational efficiency and accuracy, it is easier to solve the following 2 × 2

linear system (displayed in Step2-2 of Algorithm 1.27 below) to obtain a and b, once c = f(x2)

is computed.

Algorithm 1.27 (The Müller Method for Approximations of a Pair of Complex

Roots).

Input: f(x) - The given function

x0, x1, x2 - Initial approximations

ǫ - Tolerance

N - The maximum number of iterations

Output: An approximation of the root x = ξ

Step 1. Evaluate the functional values at the initial approximations: f(x0), f(x1),

and f(x2).

Step 2. Compute the next approximation x3 as follows:

2.1 Set c = f(x2).

2.2 Solve the 2× 2 linear system for a and b:

(

(x0 − x2)
2 (x0 − x2)

(x1 − x2)
2 (x1 − x2)

)(

a

b

)

=

(

f(x0)− c

f(x1)− c

)

.

2.3 Compute x3 = x2 +
−2c

b±
√
b2 − 4ac

choosing the sign + or − so that the denomi-

nator is the largest in magnitude.

Step 3. Test if |x3 − x2| < ǫ or if the number of iterations exceeds N . If so, stop. Otherwise

go to Step 4.
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Step 4. Relabel x3 as x2, x2 as x1, and x1 as x0:















x2 ≡ x3

x1 ≡ x2

x0 ≡ x1
Return to Step 1.

Example 1.28

(Approximating a Pair of Complex Roots by Muller’s Method) Approximate a pair of

complex roots of x3 − 2x2 − 5 = 0 starting with the initial approximations as x0 = −1, x1 = 0,

and x2 = 1. (Note the roots of f(x) = {2.6906,−0.3453 ± 1.31876}.)

Input Data:







The function: f(x) = x3 − 2x2 − 5,

The initial approximations: x0 = −1, x1 = 0, x2 = 1

Formula to be used: x3 = x2 +
−2c

b±
√
b2−4ac

,

Choosing + or − to obtain the largest (in magnitude) denominator.

Solution.

Iteration 1.

Step 1. Compute the functional values. f(x0) = −8, f(x1) = −5, f(x2) = −6.

Step 2. Compute the next approximation x3 as follows:

2.1 Set c: c = f(x2) = −6

2.2 Compute a and b: a and b are obtained by solving the 2× 2 linear system:

4a− 2b = −2

a− b = 1

]

⇒ a = −2, b = −3

2.3 Compute x3:

x3 = x2 −
2c

b−
√
b2 − 4ac

= x2 +
12

−3−
√
9− 48

= 0.25 + 1.5612i.

Iteration 2. Relabel x3 as x2, x2 as x1, and x1 as x0:















x2 ≡ x3 = 0.25 + 1.5612i

x1 ≡ x2 = 1

x0 ≡ x1 = 0
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Step 1. Compute the new functional values: f(x0) = −5, f(x1) = −6, and f(x2) =

−2.0625 − 5.0741i

Step 2. Compute the next approximation x3:

2.1 Set c = f(x2).

2.2 Obtain a and b by solving the 2× 2 linear system:

(

x22 −x2

(x1 − x2)
2 (x1 − x2)

)(

a

b

)

=

(

f(x0)− c

f(x1)− c

)

,

which gives a = −0.75 + 1.5612i, b = −5.4997 − 3.1224i.

2.3 x3 = x2 −
2c

b−
√
b2 − 4ac

= x2 − (0.8388 + 0.3702i) = −0.5888 + 1.1910i

Iteration 3. Relabel x3 as x2, x2 as x1, and x1 as x0:















x2 ≡ x3 = −0.5888 + 1.1910i

x1 ≡ x2 = 0.25 + 1.5612i

x0 ≡ x1 = 1

Step 1. Compute the functional values: f(x0) = −6, f(x1) = −2.0627 − 5.073i, f(x2) =

−0.5549 + 2.3542i

Step 2. Compute the new approximation x3:

2.1 Set c = f(x2).

2.2 Obtain a and b by solving the 2× 2 system:

(

(x0 − x2)
2 (x0 − x2)

(x1 − x2)
2 (x1 − x2)

)(

a

b

)

=

(

f(x0)− c

f(x1)− c

)

,

which gives a = −1.3888 + 2.7522i and b = −2.6339 − 8.5606i.

3 x3 = x2 −
2c

b−
√
b2 − 4ac

= −0.3664 + 1.3508i

Iteration 4. x3 = −0.3451 + 1.3180i (Details computations are similar and not shown)

Iteration 5. x3 = −0.3453 + 1.3187i

Iteration 6. x3 = 0.3453 + 1.3187i

Test for Convergence:

∣

∣

∣

∣

x3 − x2
x2

∣

∣

∣

∣

< 5.1393 × 10−4, we stop here and accept the latest value

of x3 as an approximation to the root.
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Thus, an approximate pair of complex roots is:

α1 = −0.3455 + 1.3187i, α2 = −0.3455 − 1.3187i.

Verify: How close is this root to the actual root? (x−α1)(x−α2)(x−2.6906) = x3−1.996x2−5

Example 1.29

(Approximating a Real Root by Muller’s Method)

Approximate a real root of f(x) = x3 − 7x2 +6x+5 using x0 = 0, x1 = 1, and x2 = 2 as initial

approximations. (All three roots are real: 5.8210, 1.6872, −0.5090. We will try to approximate

the root 1.6872).

Input Data:







f(x) = x3 − 7x2 + 6x+ 5

Initial approximations: x0 = 0, x1 = 1, and x2 = 2.

Solution.

Iteration 1. Compute x3 from x0, x1, and x2:

Step 1. The functional values at the initial approximations: f(x0) = 5, f(x1) =

5, f(x2) = −3.

Step 2. Compute the next approximation x3:

2.1 Compute c = f(x2) = −3.

2.2 Compute a and b by solving the 2× 2 linear system:
(

(x0 − x2)
2 (x0 − x2)

(x1 − x2)
2 (x1 − x2)

)(

a

b

)

=

(

5− c

5− c

)

or
(

4 −2

1 −1

)(

a

b

)

=

(

8

8

)

⇒







a = −4

b = −12

2.3 Compute x3 = x2 −
2c

b−
√
b2 − 4ac

x3 = x2 − 0.2753 = 1.7247 (choosing the negative sign in the determinant).

Iteration 2. Relabel x3 as x2, x2 as x1, and x1 as x0:















x2 ≡ x3 = 1.7247,

x1 ≡ x2 = 2,

x0 ≡ x1 = 1
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Step 1. Compute the functional values at the relabeled approximations: f(x0) = 5,

f(x1) = −3, f(x2) = −0.3441

Step 2. Compute the new approximation x3:

2.1 Set c = f(x2) = −0.3441.

2.2 Then a and b are obtained by solving the 2× 2 linear system:

(

0.5253 −0.7247

0.0758 0.2753

)(

a

b

)

=

(

5− c

3− c

)

,⇒







a = −2.2752

b = −9.0227

2.3 x3 = x2 −
2c

b−
√
b2 − 4ac

= 1.7247 − 0.0385 = 1.6862
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Comparison of Different Methods for the Root-Finding Problem

Method Work Required Convergence Remarks

Bisection Two function evaluations Always converges (i) The initial interval

per iteration (but slow) containing the root

must be found first.

(ii) A bracketing

method - every iteration

brackets the root.

Fixed-Point One function evaluation Rate of convergence Finding the right iteration

per iteration is linear function x = g(x) is

a challenging task

Newton Two function evaluations Quadratic convergence (i) Initial approximation x0

per iteration−function at a simple root. must be chosen carefully-if

value and value of the Convergence is linear it is far from the root, the

derivative at the iterate for a multiple root. method will diverge.

(ii) For some function, the

derivative is difficult to

compute, if not impossible

Secant Two function evaluations Superlinear Needs two initial

per iteration−however, approximations

only one of the two is

a new evaluation

Müller Three function evaluations Convergence is almost Does not require

and solution of a 2× 2 quadratic near the root derivative and can

linear system per iteration compute complex roots

with starting with

real approximations.

Concluding Remarks

• If the derivation of f(x) is computable, then the Newton method is an excellent root-

finding mehtod. The initial approximation x0 can be computed by drawing a graph of

f(x) or by running a far iteration of the bisection method and taking the approximate

value obtained by the bisection method as the initial approximation for Newton-Ralphson

iteration.

• If the derivative is not computable, use the secant method, instead.
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1.11 Sensitivity of the Roots of a Polynomial

The roots of a polynomial can be very sensitive to small perturbutions of the coefficients of the

polynomial. For example, take

p(x) = x2 − 2x+ 1.

The roots are x1 = 1, x2 = 1. Now perturb only the coefficient −2 to −1.9999, leaving the

other two coefficients unchanged. The roots of the peturbed polynomial are: 1 ± .01i. Thus,

both the roots become complex.

One might think that this happened because of the roots of p(x) are multiple roots. It is

true that the multiple roots are prone to perturbations, but the roots of a polynomial with

well-separated roots can be very sensitive too!

The well-known example of this is the celebrated Wilkinson polynomial:

p(x) = (x− 1)(x− 2)...(x − 20).

The roots of this polynomial are 1, 2, . . ., 20 and thus very well-separated. But, a small

perturbation of the coefficient x19 which is −210+2−23 will change the roots completely. Some

of them will even become complex. This is illustrated in the following graph. Note that some

roots are more sensitive than the others.

1.12 Deflation Technique

Deflation is a technique to compute the other roots of f(x) = 0, once an approximate real root

or a pair of complex roots are computed. Then if x = α is an approximate root of P (x) = 0,

where P (x) is a polynomial of degree n, then we can write

P (x) = (x− α)Qn−1(x)

where Qn−1(x) is a polynomial of degree n− 1.

Similarly, if x = α± iβ is an approximate pair of complex conjugate roots, then

P (x) = (x− α− iβ)(x− α+ iβ)Qn−2(x)

where Qn−2(x) is a polynomial of degree n− 2.

Moreover, the zeros of Qn−1(x) in the first case and those of Qn−2(x) is the second case are

also the zeros of P (x).

The coefficients of Qn−1(x) or Qn−2(x) can be generated by using synthetic division as in

Horner’s method, and then any of the root-finding procedures obtained before can be applied to
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Figure 1.8: Roots of the Wilkinson Polynomial (Original and Perturbed)
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compute a root or a pair of roots of Qn−2(x) = 0 or Qn−1(x). The procedure can be continued

until all the roots are found.

Example 1.30

Find the roots of f(x) = x4 + 2x3 + 3x2 + 2x+ 2 = 0.

It is easy to see that x = ±i is a pair of complex conjugate roots of f(x) = 0. Then we can

write

f(x) = (x+ i)(x− i)(b3x
2 + b2x+ b1)

or

x4 + 2x3 + 3x2 + 2x+ 2 = (x2 + 1)(b3x
2 + b2x+ b1).

Equating coefficients of x4 , x3, and x2 on both sides, we obtain

b3 = 1, b2 = 2, b1 + b3 = 3,

giving b3 = 1, b2 = 2, b1 = 2.

So, (x4 + 2x3 + 3x2 + 2x+ 2) = (x2 + 1)(x2 + 2x+ 2).
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Thus the roots of the polynomial equation: x4 + 2x3 + 2x2 + 2x + 2 are given by the roots of

(i) x2 + 1 = 0 and (ii) x2 + 2x+ 2.

The zeros of the deflated polynomial Q2(x) = x2 + 2x + 2 can now be found by using any of

the methods described earlier.

1.13 MATLAB Functions for Root-Finding

MATLAB built-in functions fzero, poly, polyval, and roots can be used in the context of

zero-finding of a function.

In a MATLAB setting, type help follwed by these function names, to know the details of the

uses of these functions. Here are some basic uses of these functions.

A. Function fzero: Find the zero of f(x) near x0. No derivative is required.

Usage:

y = fzero (function, x0).

function − Given function (specified either as a MATLAB function file or as

an anonymous function).

x0 − A point near the zero of f(x), if it is a scalar.

x0 − If given as a 2-vector,

[

a

b

]

then it is assumed that f(x) has a zero

in the interval [a, b].

• The function fzero can also be used with options to display the optimal requirements

such as values of x and f(x) at each iteration (possibly with some specified tolerance).

For example, the following usages:






options = optimset (’Display’, ’iter’)

z = fzero (function, x0, options)

or

z = fzero (function, x, optimset (’Display’, ’iter’). will display the value of x and the

corresponding value of f(x) at each iteration performed (see below Exercise 1.31). Other

values of options are also possible.

Example 1.31 (i) Find the zero of f(x) = ex − 1 near x = 0.1.

(ii) Find the zero of f(x) = ex−1 in [−1, 2] and display the values of x and f(x) at each

iteration.

Solution (i)
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z = fzero (@(z) exp(x)− 1, 0.1)

z = 0.

Solution (ii)

z = fzero (@(x) exp(x)− 1, [−1, 2]T )

z = 2.1579e−17

• z = fzero (@(x) exp(x)− 1, [−1, 2] opimset (’display’, ’iter’)).

Funct Count x f(x) Procedure

2 −1 0.632121 initial

3 −0.729908 −0.518047 interpolation

4 0.404072 0.48811 interpolation

5 −0.151887 −0.140914 interpolation

6 −0.0292917 −0.0288669 interpolation

7 0.000564678 0.000546857 interpolation

8 −8.30977e−06 −8.30974e−06 interpolation

9 −2.34595e−09 −2.345959e−09 interpolation

10 2.15787e−17 0 interpolation

Zero found in the interval [−1, 2]. z = 2.1579e−17 .

Remarks: As shown from the above output that the function fzero uses hybrid methods

for root-finding. Initially it uses a method such as the secant method which does not

require derivatie computation and then switches to inverse interpolation.

Example 1.32

It is well-known that the lateral surface area of a cone is:

s(r) = πrl.

h

r

l

r = radius

l = length

h = height

Since l =
√
h2 + r2

We see that s(r) is a function of f if h is known:

s(r) = πr
√

h2 + r2.
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Find the radius of the cone whose lateral surface area is 750m2 and the height is 9m,

using MATLAB function fzero.

Solution

We need to find a zero r of the function:

f(r) = 750 − πr
√

r2 + 9

Choose r0 = 5.

r = fzero (@(r)750 − π ∗ r ∗ sqrt+ (r2 + 9), 5)

r = 15.3060.

So, the radius of the cone should be 15.3060m.

B. Functions: poly, polyval, and roots.

These functions relate to finding the roots of a polynomial equation.

poly - converts roots to a polynomial equation.

• poly (A), when A is an n×n matrix, gives a row vector with (n+1) elements which

are the coefficients of the characteristic polynomial

P (λ) = det(λI −A)

• poly (v), when v is a vector, gives a vector whose elements are the coefficients of the

polynomial whose roots are the elements of v.

roots - Find the polynomial roots.

• roots (c) computes the roots of the polynomial whose coefficients are the elements of

the vector c:

P (x) = c1x
n + c2x

n−1 + · · ·+ cnx+ cx+1

polyval - Evaluates the value of a polynomial at a given point.

• y = polyval (p, z) returns the value of a polynomial P (x) at x = z.

where

p = the vector containing the coefficients (c1, c2, . . . , cn+1) of the polynomial P (x) as above.

z = a number, a vector, or a matrix.

If it is a vector or matrix, P (x) is evaluated at all points in z.

Example 1.33

Using the functions poly, roots, and polyval,
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(i) Find the coefficients of the polynomial equation P3(x) whose roots are: 1, 1, 2, and

3.

(ii) Compute now, numerically, the roots and check the accuracy of each computed root.

(iii) Perturb the coefficient of x2 of P4(x) by 10−4 and recompute the roots.

Solution (i).

v = [1, 1, 2, 3]T

c = polyv

The vector c contains the coefficients of the 4-th degree polynomial P4(x) with the roots:

1,1,2, and 3.

c = [1,−7, 17,−17, 6]T

P4(x) = x4 − 7x3 + 17x2 − 17x+ 6

Solution (ii).

z = roots (c) gives the computed zeros of the polynomial P4(x).

z =











3.0000

2.0000

1.0000

1.0000











Solution (iii).

Perturbed polynomial P̃4(x) is given by

P̃4(x) = x4 − (7 + 10−4)x3 + 17x2 − 17x+ 6

The vector cc containing the coefficients of P̃4(x) is given by:

cc = [ ]T

zz = roots (cc).

The vector zz contains the zeros of the perturbed polynomial P̃4(x):

vv = polyval (zz).

The vector vv contains the values of P̃4(x) evaluated at the computed roots of P̃4(x):

vv = [ ]T
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• Function eig.

• eig(A) is used to compute the eigenvalues of a matrix A. It can be used to find all the roots

of a polynomial, as the following discussions show.

It is easy to verify that the roots of the polynomial

Pn(x) = a0 + a1x+ a2x
2 + · · · + an−1x

n−1 + xn

are the eigenvalues of the companion matrix.

Cn =

















0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1

















Thus,

eig(cn) will compute all the roots of Pn(x). In fact, the MATLAB built-in function roots(c)

is based on this idea.

Example 1.34

Find the roots of P3(x) = x3 − 3x+ 1.

Solution.

The matrix c3 =







0 0− 1

1 0 0

0 1 3






.

eig(C3) gives the roots of P3(x):

eig(C3) = (−1.8794, 1.5321, 0.3473).

Thus the roots of P3(x) are:















−1.8784

1.5321

0.3473

Verify: We will now show that these roots are the same as obtained by the function roots:

c = [1, 0, 3, 1]T

roots (c).
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roots(c) =















−1.8784

1.5321

0.3473

same as obtained by eig(C3).

Remarks: It is not recommended that the eigenvalues of an arbitrary matrix A are com-

puted by transforming A first into companion form C and then finding its zeros. Because, the

transforming matrix can be highly ill-conditioned (Please see Chapter 8).
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EXERCISES

0. (Conceptual) Answer True or False. Give reasons for your answer.

(i) Bisection method is guaranteed to find a root in the interval in which the root lies.

(ii) Bisection method converges quite fast.

(iii) It is possible to theoretically find the minimum number of iterations needed by

bisection method prior to starting the iteration.

(iv) Bisection method brackets the root in each iteration.

(v) Newton’s method always converges.

(vi) Quadratic convergence means that about two digits of accuracy are obtained at each

iteration.

(vii) Fixed point iteration always converges, but the rate of convergence is quite slow.

(viii) In the presence of a multiple root, Newton’s method does not converge at all.

(ix) The rate of convergence of Newton’s method, when it converges, is better than the

secant method.

(x) Both the secant and false-positive methods are bracket methods.

(xi) Horner’s scheme efficiently computes the value of a polynomial and its derivative at

a given point.

(xii) Muller’s method can compute a pair of complex conjugate roots using only real

approximations.

(xiii) Only the multiple roots of a polynomial equation are sensitive to small perturbations

of the data.

(xiv) The fixed-point iteration theorem (Theorem ??) gives both necessary and sufficient

conditions of the convergence of the fixed-point iteration to a root.

(xv) A computational advantage of the secant method is that the derivative of f(x) is

not required.

(xvi) Newton’s method is a special case of the fixed-point iteration scheme.

(xvii) Both Newton and second methods require two initial approximations to start the

iteration.

(xviii) The convergence rate of the standard Newton’s method for a multiple root is only

linear.

(xix) A small functional value at x = α guarantees that it is a root f(x) = 0.

1. Use the bisection method to approximate
√
3 with an error tolerance ǫ = 10−3 in the

intervals: [1, 2], [1, 3], and [0, 2].



1.13. MATLAB FUNCTIONS FOR ROOT-FINDING 57

2. (Computational) For each of the following functions, do the following:

(a) Test if there is a zero of f(x) in the indicated interval.

(b) Find the minimum number of iterations, N , needed to achieve an accuracy of ǫ =

10−3 by using the bisection method.

(c) Using the bisection method, perform N number of iterations and present the results

both in tabular and graphical forms.

(i) f(x) = x sinx− 1 in [0, 2]

(ii) f(x) = x3 − 1 in [0, 2]

(iii) f(x) = x2 − 4 sinx in [1, 3]

(iv) f(x) = x3 − 7x+ 6 in [0, 1.5]

(v) f(x) = cos x−√
x in [0, 1]

(vi) f(x) = x− tanx in [4, 4.5]

(vii) f(x) = e−x − x in [0, 1]

(viii) f(x) = ex − 1− x− x2

2 in [−1, 1]

3.

4. (Computational) Construct a simple example to show that a small functional value of

f(xk) at an iteration k does not necessarily mean that xk is near the root x = ξ of f(x).

5. (Analytical)

(a) Prove that if g(x) is continuously differentiable in some open interval containing the

fixed point ξ, and if |g′(ξ) < 1, then there exists a number ǫ > 0 such that the

iteration

xk+1 = g(xk)

converges whenever x0 is chosen such that |x0 − ξ| ≤ ǫ.

(b) Using the above result, find the iteration function g(x) and an interval [a, b] for

f(x) = x− tan x

such that the iteration always converges. Find the solution with an accuracy of 10−4.

(c) Find a zero of the function f(x) = e−x−sinx in [0.5, 0.7], by choosing g(x) = x+f(x)

and using the result in (a).

6. (Computational) For each of the following functions, find an interval and an iteration

function x = g(x) so that the fixed-point iteration:

xk+1 = g(xk)

will converge for any choice of x0 in the interval. Then apply two iterations to approximate

a zero in that interval choosing a suitable initial approximation x0.
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(a) f(x) = x− cosx

(b) f(x) = 3
x2 − x− 2

(c) f(x) = x− e−x

(d) f(x) = x2 − 4 sin(x)

(e) f(x) = 1

1+e−x2
+ cos x

(f) f(x) = x2

4 − 1

(g) f(x) = x− 2 sinx

(h) f(x) = x3 − 7x+ 6

(i) f(x) = 1− tan x
4

7. (Computational) Use fixed-point iteration to compute
√
2 with an accuracy of 10−4.

8. (Computational) Study the convergence of all fixed-point iterations of the function f(x) =

x3−7x+6 at x = 2 with all possible iteration functions g(x). Represent these fixed point

iteration schemes graphically.

9. (Computational)

(a) Sketch a graph of f(x) = x+lnx and show that f(x) has one and only one zero ξ in

0 < x < ∞, but that the related fixed point iteration xi+1 = g(xi), x0 given, x0 6= ξ,

with g(x) = − lnx, does not converge to ξ even if x0 is arbitrarily close to ξ.

(b) How can one rewrite the iteration equation so as to obtain convergence? Show for

this iteration the uniqueness of the fixed point ξ. Give its rate of convergence.

10. (Computational) The iteration xn+1 = 2 − (1 + c)xn + cx3n will converge to ξ = 1 for

some values of c (provided x0 is chosen sufficiently close to ξ). Find the values of c for

which this is true. For what value of c will the convergence be quadratic?

11. (Computational) Apply Newton’s method, the secant method and the method of false

position to determine a zero with an accuracy of 10−4 to each of the functions in Exercise

6.

12. (Computational) Write down Newton’s iterations for the following functions:

(a) x3 − cos(x2 + 1) = 0

(b) 2 sin πx−
√
x2 − x+ 1 = 0

13. (Analytical and Computational) Develop Newton’s method to compute the following:

(a) ln(a) (natural log of a) (a > 0)

(b) arc cos a and arc sin a
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(c) ea

Do three iterations for each problem by choosing a suitable function and a suitable x0.

Compare your results with those obtained by MATLAB built-in function fzero.

14. (Computational) Explain what happens when Newton’s method is applied to find a root

of x3 − 3x+ 6 = 0, starting with x0 = 1.

15. (Computational) Construct your own example to demonstrate the fact that Newton’s

method may diverge if x0 is not properly chosen.

16. (Computational) Show that the Newton sequence of iterations for the function f(x) =

x3 − 2x+2 with x0 = 0 will oscillate between 0 and 1. Give a graphical representation of

this fact.

Find now a positive root of f(x) using Newton’s method by choosing a suitable x0.

17. (Computational) Study the convergence behavior of Newton’s method to approximate

the zero x = 2 of the following two polynomials:

f(x) = x3 − 3x− 2

g(x) = x2 − 4x+ 4

starting with the same initial approximation x0 = 1.9.

18. (Computational) Write down the Newton-sequence of iterations to find a minimum or a

maximum of a function f(x).

Apply it to find the minimum value of f(x) = x2 + sinx

19. (Computational and Analytical) Derive an algorithm to compute n
√
A based on New-

ton’s method and apply your algorithm to compute 5
√
30, by choosing a suitable initial

approximation.

20. (Analytical and Computational) Repeat the previous problem with the secant method

and compare the speed of convergence.

21. (Analytical) Prove that the rate of convergence of Newton’s method for a multiple root

is only linear, not quadratic. Construct a small example to support this statement.

22. (Analytical) Prove that the convergence rate of the secant method is superlinear.

23. (Computational) Apply the secant method to f(x) = x3 − 3x + 2 to approximate the

root x = 1 with x0 = 0 and x1 = 2. Show that the convergence factor is approximately

1.6.

24. (Computational) The polynomial P3(x) = x3 − 2x2 + x − 2 has a pair of zeros x = +i.

Approximate them using Muller’s method.
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25. (Computational) The polynomial P8(x) = x8+2x7+x6+2x5+5x3 +7x2+5x+7 has a

pair of complex-conjugate zeros x = ±i. Approximate them using Muller’s method (Do

three iterations.) Choose x0 = 0, x1 = 0.1, x2 = 0.5.

26. (Computational) The polynomial P6(x) = 3x6 − 7x3 − 8x2 + 12x + 3 = 0 has a double

root at x = −1. Approximate this root first by using standard Newton’s method and

then by two modified Newton’s methods, starting with x0 = −0.5.

Use Horner’s method to find the polynomial value and its derivative at each iteration.

Present your results in tabular form. (Do three iterations.)

27. (Applied) Consider the Kepler equation of motion

M = E − e sinE

relating the mean anomaly M to the eccentric anomaly E of an elliptic orbit with

eccentricity e. To find E, we need to solve the nonlinear equation:

f(E) = M + e sinE − E = 0

(a) Show that the fixed point iteration

E = g(E) = M + e sinE

converges.

(b) Given e = 0.0167 (Earth’s eccentricity)and M = 1 (in radians) compute E using

i. bisection method,

ii. fixed-point iteration E = g(E) as above,

iii. Newton’s method; and

iv. secant method.

To choose appropriate initial approximations or an interval containing the root (re-

quired for the bisection method), plot the function f(E) and then determine graph-

ically where it crosses the E-axis.

(c) Referring to the case study in Section 1.1, find the position of the planet Earth for

t = 300 days with a = 150× 106km.

28. (Applied) Consider the van der Walls equation of state:
(

P +
a

V 2

)

(V − b) = RT

Use Newton’s method to compute the specific volume V of carbon dioxide at a temperature

of T = 300oK, given P = 1 atom, R = 0.082054 J (kgoK), a = 3.592 Pa·m6/kg2, b =

0.04267m2/kg.

Obtain the initial approximation V0 from the ideal gas law: PV = RT .
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29. (Applied) Repeat the last problem for oxygen for which a = 1.360 and b = 0.03183.

30. (Applied) Windmill Electric Power

It is becoming increasingly common to use wind turbines to generate electric power. The

energy output of the power generated by a windmill depends upon the blade’s diameter

and velocity of the wind. A good estimate of the energy output is given by the following

formula:

EO = 0.01328D2V 3

where EO = Energy Output, D = Diameter of the windmill blade (m), V = Velocity of

the wind in m/s.

Use Newton’s method to determine what should be the diameter of the windmill blade if

one wishes to generate 500 watts of electric power when the wind speed is 10mph.

31. (Applied) A spherical tank of radius r = Λm contains a liquid of volume V = 0.5m3.

What is the depth, h, of the liquid?

Use the following formula: V = πh2

3 (3r − h) to solve.

32. (Applied) If the displacement of a body at time t is given by

x(t) = cos 10t− 1

2
sin 10t

At what time t(s) will the displacement be 20 meters?

33. (Applied) Suppose that the displacement of a body at time t under a damping oscillation

is given by

x(t) = e−t

(

A cos

√
12

2
t+B sin

√
12

2
t

)

Determine the time required for the body to come to rest (x(t) = 0) using the initial

conditions: x(0) = 1, x′(0) = 5.

(Hints: First, find A and B using the initial conditions. Then solve the above equation

for t setting x(t) = 0.)

34. (Analytical and Computational) (Haley’s Method) The following iteration for finding

a root of f(x) = 0:

xi+1 = xi −
2f(xi)f

′(xi)
2[f(xi)2 − f(xi)f

′′(xi)]

is known as Haley’s iteration.
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(i) Prove that if f(x) is three times continuously differentiable and x = ξ is a root of

f(x) = 0; but not of its derivative, then Haley’s iteration converges to the zero if the

initial approximation x0 is sufficiently close to ξ, and that the convergence is cubic;

that is,

ei+1

e3i
≤ C, for some C > 0

(ii) Using Haley’s iteration, compute a positive zero of f(x) = x3 − 3x+1 starting with

x0 = 0.5 with an error tolerance of ǫ = 10−4.
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MATLAB EXERCISES

M1.1 Write MATLAB functions in the following formats to implement the methods: Bisec-

tion, Fixed-Point Iteration, Newton, Secant, and Muller.

• function [xval, funval, iter, error] = bisect(fnc, intv, tol, maxitr)

• function [xval, funval, iter, erro] = newton(fnc, deriv, x0, to, maxitr)

• function [ xval, funval, iter, error] = fixed-point(fnc, x0, tol, maxitr)

• function [xval,funval,iter, error] = secant(fnc, x0, x1, tol, maxitr)

• function [xval, funval, iter, error] = muller(fnc, x0, x1, x2, tol, maxitr)

intv = Interval containing the root

xval = Value of the root at the present iteration

iter = Iteration number

funval = Value of the function at the present iteration

error = Error message in case of nonconvergence

fnc = The function input as a string

deriv = Derivative of function also given as a string

xo, x1, x2 = Initial approximations

tol = Error tolerance

maxitr = Maximum number of iterations to be performed

fncval = Function value of the root at each iteration

Presentation of Results: Present your results both in tabular and graphic forms. The

tables and graphs should display the values of the function and the approximate root at

each iteration. Results from all the methods need to be presented in the same table and

same graph.

Table : Comparison of Different Root-Finding Methods

Method Iteration x-Value Function Value

Data: Implement the methods using the functions given in Exercises 6(a), 6(b), 6(d),

6(e), 6(h), and 6(i).

M1.2 Apply now the built-in MATLAB function fzero to the function of Exercise 2 and present

your results along with those of other methods in the same table and same graph using

the format of M1.1.
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M1.3 Write a MATLAB program, using the built-in MATLAB functions, polyval, and poly-

der to find a zero of a polynomial, based on Newton’s Method with Horner’s scheme.

Implement the program using

P (x) = x5 − x4 − 5x3 − x2 + 4x+ 3

Present results of each iteration both in tabular and graphic forms.

M1.4 Choosing the values of a, b, R and P in appropriate units, find v at temperatures

T = 100oK, T = 250oK, T = 450oK by solving the Van der Waals equation state using

each of the methods developed in M1.1. Present the results in tabular form.

M1.5 Apply the MATLAB program newton to compute (a) 5
√
1000 and (b) 1

12000 , (c) e5,

and (d) ln(10), choosing a suitable initial approximation in each case. For each problem,

present your results of iterations in tabular forms.

M1.6 Consider the following equation:

A =
R

i

[

1 = (1 + i)−n
]

where A = Amount of money borrowed; i = Interest rate per time period; R = Amount

of each payment; n = Number of payments (all payments are of equal value).

If the amount of the loan is $20,000 and the payment amount per month is $450.00 and

the loan is paid off in 5 years, what is the monthly interest rate? (Solve the problem using

the newton program.)

M1.7 The following formula gives the upward velocity v of a rocket:

v = u ln
m

m− qt
− gt

where u = The velocity of the fuel expelled relative to the rocket; m = Initial mass of the

rocket (at t = 0); g = Gravity’s acceleration; t = Time.

Use any bracket method to find the time taken by the rocket to attain the velocity of 500

m/s, given

u = 950 m/s, m = 2× 105 kg, q = 3, 000 kg/s, and g = 9.8 m/s2.

Choose 10 ≤ t ≤ 25.

M1.8 Suppose the concentration c of a chemical in a mixed reactor is given by:

c = cin(1− e−0.05t) + c0e
−0.05t

where cin = Inflow concentration; and c0 = Original concentration.

Find the time t required for c to be 90% of cin, if c0 = 5, and cin = 15.
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M1.9 Display the results of the following MATLAB operations:

f = inline (’3/x̂2 − x− 2’)

fzero = (f, 1.5, optimset(’display’, ’iter’))

Interpret. What do these results mean?

M1.10 (Study of the Root-Sensitivities of Polynomials)

Using MATLAB functions, roots, poly, and polyval, do the following for each of the

following polynomials.

A. Compute all the zeros of the unperturbed polynomial.

B. Put perturbations of orders 10−3, 10−4, and 10−5 to the second highest coefficient

and recompute the zeros of each of the perturbed polynomial.

C. Present your results in tabular form that should contain (i) all the zeros of the

original, (ii) zeros of the perturbed polynomials with each perturbation and, (iii)

functional values at each computed zero.

D. Plot the zeros of the original and perturbed polynomials on the same graph for each

polynomial.

E. Write your observations in each case.

Data:

(i) The polynomial P20(x) with the zeros 1, 2, 3, 4, . . . , 20.

(ii) The polynomial P3(x) with all the zeros equal to 1.

(iii) The polynomial P4(x) with two doable zeros equal to 1 and two other zeros as 10

and 20.

M1.11 Modify the program Muller to accommodate deflation for computing more than one

root.

The polynomial

P7(x) = x7 − 41x6 + 690x5 − 6130x4 + 30689x3 − 84969x2 + 1116460x − 56700

has zeros: 10, 9, 7, 6, 5, 3, and 1.

Compute approximations to all of them using Muller’s method and the technique of

deflation.
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