
Computer science Dept. Web Design Lecture-Part Three

1

PHP User Defined Functions

Besides the built-in PHP functions, we can create our own functions.

A function is a block of statements that can be used repeatedly in a program.

A function will not execute immediately when a page loads.

A function will be executed by a call to the function.

Create a User Defined Function in PHP

A user defined function declaration starts with the word "function":

Syntax

Note: A function name can start with a letter or underscore (not a number).

Tip: Give the function a name that reflects what the function does!

Function names are NOT case-sensitive.

In the example below, we create a function named "writeMsg()". The opening curly brace

({) indicates the beginning of the function code and the closing curly brace (}) indicates

the end of the function. The function outputs "Hello world!". To call the function, just

write its name:

function functionName() {

 code to be executed;

}

Computer science Dept. Web Design Lecture-Part Three

2

Example

PHP Function Arguments

Information can be passed to functions through arguments. An argument is just like a

variable.

Arguments are specified after the function name, inside the parentheses. You can add as

many arguments as you want, just separate them with a comma.

The following example has a function with one argument ($fname). When the

familyName() function is called, we also pass along a name (e.g. Jani), and the name is

used inside the function, which outputs several different first names, but an equal last

name:

Example

<?php

function writeMsg() {

 echo "Hello world!";

}

writeMsg(); // call the function

?>

<?php

function familyName($fname) {

 echo "$fname Refsnes.
";

}

familyName("Jani");

familyName("Hege");

familyName("Stale");

familyName("Kai Jim");

familyName("Borge");

?>

Computer science Dept. Web Design Lecture-Part Three

3

The following example has a function with two arguments ($fname and $year):

PHP Default Argument Value

The following example shows how to use a default parameter. If we call the function setHeight() without

arguments it takes the default value as argument:

Example

PHP Functions - Returning values

Example

<?php

function familyName($fname, $year) {

 echo "$fname Refsnes. Born in $year
";

}

familyName("Hege", "1975");

familyName("Stale", "1978");

familyName("Kai Jim", "1983");

?>

<?php

function setHeight($minheight = 50) {

 echo "The height is : $minheight
";

}

setHeight(350);

setHeight(); // will use the default value of 50

setHeight(135);

setHeight(80);

?>

Computer science Dept. Web Design Lecture-Part Three

4

To let a function return a value, use the return statement:

PHP 5 Arrays

An array stores multiple values in one single variable:

Example

What is an Array?

An array is a special variable, which can hold more than one value at a time.

If you have a list of items (a list of car names, for example), storing the cars in single

variables could look like this:

However, what if you want to loop through the cars and find a specific one? And what if

you had not 3 cars, but 300?

The solution is to create an array!

An array can hold many values under a single name, and you can access the values by

referring to an index number.

Create an Array in PHP

In PHP, the array() function is used to create an array:

array();

In PHP, there are three types of arrays:

 Indexed arrays - Arrays with a numeric index

 Associative arrays - Arrays with named keys

<?php

$cars = array("Volvo", "BMW", "Toyota");

echo "I like " . $cars[0] . ", " . $cars[1] . " and " . $cars[2] . ".";

?>

$cars1 = "Volvo";

$cars2 = "BMW";

$cars3 = "Toyota";

Computer science Dept. Web Design Lecture-Part Three

5

 Multidimensional arrays - Arrays containing one or more arrays

PHP Indexed Arrays

There are two ways to create indexed arrays:

The index can be assigned automatically (index always starts at 0), like this:

$cars = array("Volvo", "BMW", "Toyota");

or the index can be assigned manually:

$cars[0] = "Volvo";

$cars[1] = "BMW";

$cars[2] = "Toyota";

The following example creates an indexed array named $cars, assigns three elements to it,

and then prints a text containing the array values:

Example

Get The Length of an Array - The count() Function

The count() function is used to return the length (the number of elements) of an array:

Example

<?php

$cars = array("Volvo", "BMW", "Toyota");

echo "I like " . $cars[0] . ", " . $cars[1] . " and " . $cars[2] . ".";

?>

<?php

$cars = array("Volvo", "BMW", "Toyota");

echo count($cars);

?>

Computer science Dept. Web Design Lecture-Part Three

6

Loop Through an Indexed Array

To loop through and print all the values of an indexed array, you could use a for loop, like

this:

Example

PHP Associative Arrays

Associative arrays are arrays that use named keys that you assign to them.

There are two ways to create an associative array:

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

or:

$age['Peter'] = "35";

$age['Ben'] = "37";

$age['Joe'] = "43";

The named keys can then be used in a script:

Example

<?php

$cars = array("Volvo", "BMW", "Toyota");

$arrlength = count($cars);

for($x = 0; $x < $arrlength; $x++) {

 echo $cars[$x];

 echo "
";

}

?>

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

echo "Peter is " . $age['Peter'] . " years old.";

?>

Computer science Dept. Web Design Lecture-Part Three

7

Loop Through an Associative Array

To loop through and print all the values of an associative array, you could use a foreach

loop, like this:

Example

PHP - Sort Functions For Arrays

In this chapter, we will go through the following PHP array sort functions:

 sort() - sort arrays in ascending order

 rsort() - sort arrays in descending order

 asort() - sort associative arrays in ascending order, according to the value

 ksort() - sort associative arrays in ascending order, according to the key

 arsort() - sort associative arrays in descending order, according to the value

 krsort() - sort associative arrays in descending order, according to the key

Sort Array in Ascending Order - sort()

The following example sorts the elements of the $cars array in ascending alphabetical

order:

Example

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

foreach($age as $x => $x_value) {

 echo "Key=" . $x . ", Value=" . $x_value;

 echo "
";

}

?>

<?php

$cars = array("Volvo", "BMW", "Toyota");

sort($cars);

?>

Computer science Dept. Web Design Lecture-Part Three

8

The following example sorts the elements of the $numbers array in ascending numerical

order:

Example

Sort Array in Descending Order - rsort()

The following example sorts the elements of the $cars array in descending alphabetical

order:

Example

The following example sorts the elements of the $numbers array in descending numerical

order:

Example

Sort Array (Ascending Order), According to Value - asort()

<?php

$numbers = array(4, 6, 2, 22, 11);

sort($numbers);

?>

<?php

$cars = array("Volvo", "BMW", "Toyota");

rsort($cars);

?>

<?php

$numbers = array(4, 6, 2, 22, 11);

rsort($numbers);

?>

Computer science Dept. Web Design Lecture-Part Three

9

The following example sorts an associative array in ascending order, according to the

value:

Example

Sort Array (Ascending Order), According to Key - ksort()

The following example sorts an associative array in ascending order, according to the key:

Example

Sort Array (Descending Order), According to Value - arsort()

The following example sorts an associative array in descending order, according to the

value:

Example

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

asort($age);

?>

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

ksort($age);

?>

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

arsort($age);

?>

Computer science Dept. Web Design Lecture-Part Three

11

Sort Array (Descending Order), According to Key - krsort()

The following example sorts an associative array in descending order, according to the

key:

Example

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");

krsort($age);

?>

