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1. Mark each of the following statements as true or false.

a. When we use the approximation f ′(a) ≈ ( f (a+h)− f (a))/h on a com-
puter, we can always obtain higher accuracy by choosing a smaller value
for h.

b. If we increase the number of bits for storing floating-point numbers
(e.g.128-bit precision), we can obtain better numerical approximations to
derivatives.

c. We are using Newton’s difference quotient method to approximate the
derivative of the function f (x) = ex at the point x = 1 with a step value of
h = 0.1 (with 64-bit precission). If we change the step length to h = 0.01
then the error will be reduced by approximately a factor of 10.

d. The approximation f ′(a) ≈ ( f (a +h)− f (a))/h will give the exact an-
swer (ignoring numerical round-off errors) if the function f is linear.

e. Since we cannot know exactly how well the values of f (a+h) and f (a)
are represented on a computer, it is difficult to estimate accurately what
the error will be in numerical differentiation.

2. a. (Exam 2010) We are to calculate an approximation to the derivative
f ′(a) to the function f (x) = cos(x) by the approximation

f ′(a) ≈ f (a +h)− f (a)

h
.

Then the absolute error for any h > 0 is bounded by (we do not take round
off errors into account)

� h2/2

� h2 cos(1)

� h cos(a)/4

� h/2

b. (Exam 2008) We are going to calculate an approximation to the deriva-
tive f ′(a) of the function f by the approximation

f ′(a) ≈ f (a +h)− f (a)

h
.
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If we are using floating point numbers the total error is bounded by (In
the two last alternatives ε∗ depends on the type of floating point numbers
used):

� h2

2 maxx∈[a,a+h]
∣∣ f ′′(x)

∣∣
� h3

6 maxx∈[a,a+h]
∣∣ f ′′′(x)

∣∣
� h2

6 maxx∈[a,a+h]
∣∣ f ′′′(x)

∣∣+ 6ε∗
h3 maxx∈[a,a+h]

∣∣ f (x)
∣∣

� h
2 maxx∈[a,a+h]

∣∣ f ′′(x)
∣∣+ 2ε∗

h maxx∈[a,a+h]
∣∣ f (x)

∣∣
3. In this exercise we are going to numerically compute the derivative of f (x) =
ex at a = 1 using Newton’s quotient as described in observation ??. The exact
derivative to 20 digits is

f ′(1) ≈ 2.7182818284590452354.

a. Compute the approximation
(

f (1+h)− f (1)
)
/h to f ′(1). Start with h =

10−4, and then gradually reduce h. Also compute the error, and determine
an h that gives close to minimal error.
Solution: On my computer 10−8 is the power of 10 which gives the least
error in the approximation. This can be btained by running the following
program:

from math import *

for p in range(15):
h=10.0**(-p)
print p, abs((exp(1+h)-exp(1))/h-exp(1))

b. Determine the optimal h as described in Lemma ?? and compare with
the value you found in (a).
Answer: h∗ ≈ 8.4×10−9.
Solution: If we use the values ε∗ = 7×10−17 from Example ??, then Lemma ??
gives the optimal h h∗ = 2

p
ε∗ ≈ 1.6733×10−8 (terms cancel since f (a) =

f ′′(a)).

4. Mark each of the following statements as true or false.

a. If we ignore round-off errors, the symmetric Newton’s quotient method
is exact for polynomials of degree 2 or lower.
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b. Even though the symmetric Newton differentiation scheme gives bet-
ter accuracy, there is a trade-off as it is much more computationally de-
manding (i.e. it requires many more calculations) than the non-symmetric
method.

5. In this exercise we are going to check the symmetric Newton’s quotient and
numerically compute the derivative of f (x) = ex at a = 1, see exercise 11.1.??.
Recall that the exact derivative with 20 correct digits is

f ′(1) ≈ 2.7182818284590452354.

a. Compute the approximation
(

f (1+h)− f (1−h)
)
/(2h) to f ′(1). Start

with h = 10−3, and then gradually reduce h. Also compute the error, and
determine an h that gives close to minimal error.

b. Determine the optimal h given by (??) and compare with the value you
found in (a).
Answer: h∗ ≈ 5.9×10−6.

6. Determine f ′(a) numerically using the two asymmetric Newton’s quotients

fr (x) = f (a +h)− f (a)

h
, fl (x) = f (a)− f (a −h)

h

as well as the symmetric Newton’s quotient. Also compute and compare the
relative errors in each case.

a. f (x) = x2; a = 2; h = 0.01.

b. f (x) = sin x; a =π/3; h = 0.1.
Answer: With 6 digits:
( f (a +h)− f (a))/h = 0.455902, relative error: 0.0440981.
( f (a)− f (a −h))/h = 0.542432, relative error: 0.0424323.
( f (a +h)− f (a −h))/(2h) = 0.499167, relative error: 0.000832917.

c. f (x) = sin x; a =π/3; h = 0.001.

d. f (x) = sin x; a =π/3; h = 0.00001.

e. f (x) = 2x ; a = 1; h = 0.0001.

f. f (x) = x cos x; a =π/3; h = 0.0001.
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7. a. Show that the approximation to f ′(a) given by the symmetric New-
ton’s quotient is the average of the two asymmetric quotients

fr (x) = f (a +h)− f (a)

h
, fl (x) = f (a)− f (a −h)

h
.

b. Sketch the graph of the function

f (x) = −x2 +10x −5

4

on the interval [0,6] together with the three secants associated with the
three approximations to the derivative in (a) (use a = 3 and h = 2). Can
you from this judge which approximation is best?
Solution: We can plot the cuve together with the secants as follows with
Python:

from numpy import *
from scitools.easyviz import *

x=arange(0,6,0.05,float)
plot(x,(-x**2+10*x-5)/4)
hold(’on’)
plot([1,3],[(-1**2+10*1-5)/4,(-3**2+10*3-5)/4])
plot([1,5],[(-1**2+10*1-5)/4,(-5**2+10*5-5)/4])
plot([3,5],[(-3**2+10*3-5)/4,(-5**2+10*5-5)/4])

c. Determine the three difference quotients in (a) numerically for the
function f (x) using a = 3 and h1 = 0.1 and h2 = 0.001. What are the rela-
tive errors?
Answer: With 6 digits:
( f (a +h)− f (a))/h = 0.975, relative error: 0.025.
( f (a)− f (a −h))/h = 1.025, relative error: 0.025.
( f (a +h)− f (a −h))/(2h) = 1, relative error: 8.88178×10−16.

d. Show that the symmetric Newton’s quotient at x = a for a quadratic
function f (x) = ax2 +bx + c is equal to the derivative f ′(a).

8. Use the symmetric Newton’s quotient and determine an approximation to
the derivative f ′(a) in each case below. Use the values of h given by h = 10−k

k = 4,5, . . . ,12 and compare the relative errors. Which of these values of h gives
the smallest error? Compare with the optimal h predicted by (??).
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a. The function f (x) = 1/(1+cos(x2)) at the point a =π/4.
Answer: Optimal h: 2.9×10−6.

b. The function f (x) = x3 +x +1 at the point a = 0.
Answer: Optimal h: 3.3×10−6

9. Mark each of the following statements as true or false.

a. The 4-point method with a step length of h = 0.2 will usually have a
smaller error than the symmetric Newton’s quotient method with h = 0.1.

b. If we ignore round-off, the 4-point method is exact for all polynomials.

10. In this exercise we are going to check the 4-point method and numerically
compute the derivative of f (x) = ex at a = 1. For comparison, the exact deriva-
tive to 20 digits is

f ′(1) ≈ 2.7182818284590452354.

a. Compute the approximation

f (a −2h)−8 f (a −h)+8 f (a +h)− f (a +2h)

12h

to f ′(1). Start with h = 10−3, and then gradually reduce h. Also compute
the error, and determine an h that gives close to minimal error.
Solution: On my computer 10−3 is the power of 10 which gives the least
error in the approximation. This can be tested by running the following
program:

from math import *

for p in range(15):
h=10.0**(-p)
print p, abs((exp(1-2*h)-8*exp(1-h)+8*exp(1+h)-exp(1+2*h))/(12*h)-exp(1))

b. Determine the optimal h given by (??) and compare with the experi-
mental value you found in (a).
Answer: Opitmal h: 9.9×10−4.
Solution: If we use the value ε∗ = 7× 10−17 from Example ?? then (??)

gives the optimal h h∗ = 5
√

27ε∗
2 ≈ 9.8875×10−4 (terms cancel since f (a) =

f (5)(a))
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11. a. (Exam 2009) We use the expression ( f (h) − 2 f (0) + f (h))/h2 to
calculate approximations to f ′′(0) (we do the calculations exact, without
round off errors). Then the result will always be correct if f (x) is

� a trigonometric function

� a logarithmic function

� a polynomial of degree 4

� a polynomial of degree 3

b. (Exam 2007) We approximate the second derivative of the function
f (x) at x = 0, by the approximation

D2 f (0) = f (h)−2 f (0)+ f (−h)

h2

We assume that f is differentiable an infinite number of times, and we do
not take round off errors into account. Then the error∣∣ f ′′(0)−D2 f (0)

∣∣
is bounded by

� h2

12 maxx∈[−h,h]
∣∣ f ′′(x)

∣∣
� h2

48 maxx∈[−h,h]
∣∣ f (4)(x)

∣∣
� h

4 maxx∈[−h,h]
∣∣ f ′′(x)

∣∣
� h2

12 maxx∈[−h,h]
∣∣ f (4)(x)

∣∣
12. We use our standard example f (x) = ex and a = 1 to check the 3-point ap-
proximation to the second derivative given in (??). For comparison recall that
the exact second derivative to 20 digits is

f ′′(1) ≈ 2.7182818284590452354.

a. Compute the approximation
(

f (a −h)−2 f (a)+ f (a +h)
)
/h2 to f ′′(1).

Start with h = 10−3, and then gradually reduce h. Also compute the actual
error, and determine an h that gives close to minimal error.
Solution: On my computer 10−4 is the power of 10 which gives the least
error in the approximation. This can be tested by running the following
program:
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from math import *

for p in range(15):
h=10.0**(-p)
print p, abs((exp(1-h)-2*exp(1)+exp(1+h))/h**2-exp(1))

b. Determine the optimal h given by (??) and compare with the value you
determined in (a).
Answer: Optimal h: 2.24×10−4.
Solution: If we use the value ε∗ = 7×10−17 from Example ?? then Obser-
vation ?? gives the optimal choice of h h∗ = 4

p
36ε∗ ≈ 2.2405×10−4 (terms

cancel since f (a) = f (4)(a)).

13. This exercise illustrates a different approach to designing numerical differ-
entiation methods.

a. Suppose that we want to derive a method for approximating the deriva-
tive of f at a which has the form

f ′(a) ≈ c1 f (a −h)+ c2 f (a +h), c1,c2 ∈R.

We want the method to be exact when f (x) = 1 and f (x) = x. Use these
conditions to determine c1 and c2.
Answer: c1 =−1/(2h), c2 = 1/(2h).
Solution: If the approximation method f ′(a) ≈ c1 f (a −h)+ c2 f (a +h) is
to be exact for f (x) = 1, we must have that 0 = c1 + c2, since f (a −h) =
f (a +h) = 1, and since f ′(x) = 0. Therefore we must have that c2 =−c1.

If the method is to be exact for f (x) = x we must in the same way have that

1 = c1(a −h)+ c2(a +h) = c1(a −h)− c1(a +h) =−2c1h,

so that c1 = − 1
2h ,so that also c2 = 1

2h . The method therefore becomes

− 1
2h f (a −h)+ 1

2h f (a +h) = f (a+h)− f (a−h)
2h

b. Show that the method in (a) is exact for all polynomials of degree 1,
and compare it to the methods we have discussed in this chapter.
Solution: If f (x) = cx +d we have that f ′(x) = c, and the method takes
the form

f (a +h)− f (a −h)

2h
= c(a +h)+d − (c(a −h)+d)

2h
= 2ch

2h
= c,
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so that the method is exact for all polynomials of degree ≤ 1.We see that
the method coincides with the symmetric Newton-method for differenti-
ation, and it therefore has an error of order 1

h2 , which is better than the

Newton’s quotient (which has an error of order 1
h ). It is worse than the

four point method for numerical differentiation,which has order 1
h4 .

Here it also should have been mentioned that the method also is exact for
polynomials of degree ≤ 2 (also see ??). There are several ways to see this.
First, the error estimate from Section ?? uses f (3)(x), and since all second
degree polynomials have a third derivative equal to 0, the error must be
zero. One could also as above substitute f (x) = x2 into the formula:

f (a +h)− f (a −h)

2h
= (a +h)2 − (a −h)2

2h
= 4ah

2h
= 2a,

which also is f ′(a). Finally, the symmetric Newton quotient was defined
as the derivativee at a of the unique parabola interpolating f at a −h, a,
and a +h. If f itself is a parabola it is equal to this interpolant since it is
unique, so that the symmetric Newton quotient must return the deriva-
tive.

c. Use the procedure in (a) and (b) to derive a method for approximating
the second derivative of f ,

f ′′(a) ≈ c1 f (a −h)+ c2 f (a)+ c3 f (a +h), c1,c2,c3 ∈R,

by requiring that the method should be exact when f (x) = 1, x and x2. Do
you recognise the method?
Answer: c1 =−1/h2, c2 = 2/h2, c3 =−1/h2.
Solution: If the approximation method f ′′(a) ≈ c1 f (a − h) + c2 f (a) +
c3 f (a +h) is exact for f (x) = 1, we must have that 0 = c1 + c2 + c3. If it
is exact for f (x) = x we must have that

0 = c1(a −h)+ c2a + c3(a +h) = a(c1 + c2 + c3)+h(−c1 + c3) = h(−c1 + c3),

which gives that c1 = c3. If it is exact for f (x) = x2 we must have that

2 = c1(a −h)2 + c2a2 + c3(a +h)2

= a2(c1 + c2 + c3)−2ahc1 +2ahc3 +h2(c1 + c3) = 2c1h2,

which gives that c1 = 1
h2 . We therefore also get that c3 = 1

h2 , and that c2 =
−c1 − c2 =− 2

h2 , so that the method becomes

1

2h
f (a −h)− 1

h
f (a)+ 1

2h
f (a +h) = f (a −h)−2 f (a)+ f (a +h)

h2 .
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We see that this coincides with the already seen three point method to
compute the second derivative in this section.

d. Show that the method in (c) is exact for all cubic polynomials.
Solution: All third degree polynomials have a fourth derivative equal to
0, and therefore the truncation error becomes 0 (M1 = 0 in Theorem ??).
Alternatively we can substitute f (x) = x3 into the formula:

f (a −h)−2 f (a)+ f (a +h)

2h

= (a −h)3 −2a3 + (a +h)3

h2

= a3 −3a2h +3ah2 −h3 −2a3 +a3 +3a2h +3ah2 +h3

h2

= 6ah2

h2 = 6a,

which coincides with the second derivative of f in a.

14. Previously we saw the that the Newton difference quotient could be applied
reduce bass in digital sound. What will happen to the sound if we instead apply
the numerical approximation of the second derivative to it?
Solution: We see that the coefficients in the new approximation are taken from
row 2 of Pascal’s triangle with alternating sign. This means that also this approx-
imation reduces bass. Since the values are taken from a higher row in Pascal’s
triangle, one is lead to believe that it reduces more bass than the Newton differ-
ence quotient.

15. Assume that x0, x1, . . . , xk is a uniform partition of [a,b]. It is possible to
show that the divided difference f [x0, x1, . . . , xk ] can be written on the form a

∑k
r=0 cr (−1)r f (xr ),

where a is a constant and cr are taken from row k −1 in Pascal’s triangle. By fol-
lowing the same reasoning as in this section, or appealing to Theorem ??, it is
also clear that higher order divided differences are approximations to the higher
order derivatives. Explain why this means that applying approximations to the
higher order derivatives to sound samples in a sound will typically reduce bass
in sound.

16. Mark each of the following statements as true or false.

a. Numerical integration methods are usually constructed by dividing
the interval of integration into many subintervals and using some sort of
approximation to the area under the function on each subinterval.
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17. In this exercise we are going to study the definition of the integral for the
function f (x) = ex on the interval [0,1].

a. Determine lower and upper sums for a uniform partition consisting of
10 subintervals.
Answer: I ≈ 1.63378, I ≈ 1.805628.

b. Determine the absolute and relative errors of the sums in (a) com-
pared to the exact value e −1 = 1.718281828 of the integral.

Answer:
∣∣I − I

∣∣≈ 0.085, |I−I |
|I | = 0.0491781.∣∣∣I − I

∣∣∣≈ 0.087,

∣∣∣I−I
∣∣∣

|I | = 0.051.

c. Write a program for calculating the lower and upper sums in this ex-
ample. How many subintervals are needed to achieve an absolute error
less than 3×10−3?

18. Compute the velocities at all points in the orbit for Jupiter, Mars, and Earth,
for the orbital data files used in Example ??, and plot them against each other.
Which planet has highest velocity, and lowest? The speed should be in units per
second. Note that the time difference between different samples is one day.
Solution: It is straightforward to write a function which computes the speeds
for the orbit data in a given file. The following code can be used for this:

function speeds=findspeeds(filename)
coords=findcoords(filename);
N=size(coords,2);
lengths=zeros(1,N-1);
for k=1:(N-1)
lengths(k)=norm(coords(:,k)-coords(:,k+1));

end
speeds=lengths/(60*60*24); % Numerical derivative

The speeds for the three different orbit files can then be plotted together as fol-
lows:

speeds=findspeeds(’earth.txt’);
plot(speeds, ’r’);
hold on;
speeds=findspeeds(’mars.txt’);
plot(speeds,’g’);
speeds=findspeeds(’jupiter.txt’);
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plot(speeds,’b’);
legend(’Earth’,’Mars’,’Jupiter’);

The result is shown in Figure ??. As expected from Kepler’s laws, we see that the
orbital velocities are biggest for the planets closest to the sun. We see also that
the velocities display a periodic pattern, and that the period is shorther for plan-
ets closer to the sun. The explanation is that the orbits are elliptic, not circular,
and that the velocities are bigger at points in the orbit which are closer to the
sun.
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Figure 1: The orbital velocities of earth, Mars, and Jupiter, of a period more than
two years
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