
Lecturer: khalidah ali ahmed web designs CH 4- Advance PHP
Lecturer: Zainab Khyioon Abd alrdha

1

Continue to Advance PHP

8.5 Modify a PHP Session Variable

To change a session variable, just overwrite it:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// to change a session variable, just overwrite it

$_SESSION["favcolor"] = "yellow";

print_r($_SESSION);

?>

</body>

</html>

Output: Array ([favcolor] => yellow [favanimal] => cat)

8.6 Destroy a PHP Session

To remove all global session variables and destroy the session, use session_unset() and

session_destroy()

Example:

Lecturer: khalidah ali ahmed web designs CH 4- Advance PHP
Lecturer: Zainab Khyioon Abd alrdha

2

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// remove all session variables

session_unset();

// destroy the session

session_destroy();

echo "All session variables are now removed, and the session is destroyed."

?>

</body>

</html>

Output: All session variables are now removed, and the session is destroyed.

9.1 PHP Error Handling

The default error handling in PHP is very simple. An error message with filename, line

number and a message describing the error is sent to the browser.

9.2 PHP Error Handling

When creating scripts and web applications, error handling is an important part. If your

code lacks error checking code, your program may look very unprofessional and you may be

open to security risks. This tutorial contains some of the most common error checking

methods in PHP. We will show different error handling methods:

Simple "die()" statements

Custom errors and error triggers

Error reporting

Lecturer: khalidah ali ahmed web designs CH 4- Advance PHP
Lecturer: Zainab Khyioon Abd alrdha

3

9.3 Basic Error Handling: Using the die() function

The first example shows a simple script that opens a text file:

<?php

$file=fopen("welcome.txt","r");

?>

If the file does not exist you might get an error like this:

Warning: fopen(welcome.txt) [function.fopen]: failed to open stream:

No such file or directory in C:\webfolder\test.php on line 2

To prevent the user from getting an error message like the one above, we test whether the file

exist before we try to access it:

<?php

if(!file_exists("welcome.txt")) {

 die("File not found");

} else {

 $file=fopen("welcome.txt","r");

}

?>

Now if the file does not exist you get an error like this:

File not found

The code above is more efficient than the earlier code, because it uses a simple error

handling mechanism to stop the script after the error. However, simply stopping the script is

not always the right way to go. Let's take a look at alternative PHP functions for handling

errors.

Lecturer: khalidah ali ahmed web designs CH 4- Advance PHP
Lecturer: Zainab Khyioon Abd alrdha

4

9.4 Creating a Custom Error Handler

Creating a custom error handler is quite simple. We simply create a special function that

can be called when an error occurs in PHP. This function must be able to handle a minimum

of two parameters (error level and error message) but can accept up to five parameters

(optionally: file, line-number, and the error context):

Syntax

error_function(error_level,error_message,

error_file,error_line,error_context)

Parameter Description

error_level
Required. Specifies the error report level for the user-defined error. Must

be a value number. See table below for possible error report levels

error_message Required. Specifies the error message for the user-defined error

error_file Optional. Specifies the filename in which the error occurred

error_line Optional. Specifies the line number in which the error occurred

error_context
Optional. Specifies an array containing every variable, and their values, in

use when the error occurred

9.5 Error Report levels

These error report levels are the different types of error the user-defined error handler can be

used for:

Value Constant Description

2 E_WARNING
Non-fatal run-time errors. Execution of the script is not

halted

8 E_NOTICE Run-time notices. The script found something that might

be an error, but could also happen when running a script

Lecturer: khalidah ali ahmed web designs CH 4- Advance PHP
Lecturer: Zainab Khyioon Abd alrdha

5

normally

256 E_USER_ERROR

Fatal user-generated error. This is like an E_ERROR set

by the programmer using the PHP function

trigger_error()

512 E_USER_WARNING

Non-fatal user-generated warning. This is like an

E_WARNING set by the programmer using the PHP

function trigger_error()

1024 E_USER_NOTICE
User-generated notice. This is like an E_NOTICE set by

the programmer using the PHP function trigger_error()

4096 E_RECOVERABLE_ERROR

Catchable fatal error. This is like an E_ERROR but can

be caught by a user defined handle (see also

set_error_handler())

8191 E_ALL
All errors and warnings (E_STRICT became a part of

E_ALL in PHP 5.4)

Now lets create a function to handle errors:

function customError($errno, $errstr) {

 echo "Error: [$errno] $errstr
";

 echo "Ending Script";

 die();

}

The code above is a simple error handling function. When it is triggered, it gets the error level

and an error message. It then outputs the error level and message and terminates the

script.Now that we have created an error handling function we need to decide when it should

be triggered.

Lecturer: khalidah ali ahmed web designs CH 4- Advance PHP
Lecturer: Zainab Khyioon Abd alrdha

6

9.6 Set Error Handler

The default error handler for PHP is the built in error handler. We are going to make the

function above the default error handler for the duration of the script. It is possible to change

the error handler to apply for only some errors, that way the script can handle different errors

in different ways. However, in this example we are going to use our custom error handler for

all errors:

set_error_handler("customError");

Since we want our custom function to handle all errors, the set_error_handler() only needed

one parameter, a second parameter could be added to specify an error level.

Example Testing the error handler by trying to output variable that does not exist:

<?php

//error handler function

function customError($errno, $errstr) {

 echo "Error: [$errno] $errstr";

}

//set error handler

set_error_handler("customError");

//trigger error

echo($test);

?>

The output of the code above should be something like this:

Error: [8] Undefined variable: test

9.7 Trigger an Error

In a script where users can input data it is useful to trigger errors when an illegal input occurs.

In PHP, this is done by the trigger_error() function.

Lecturer: khalidah ali ahmed web designs CH 4- Advance PHP
Lecturer: Zainab Khyioon Abd alrdha

7

Example

In this example an error occurs if the "test" variable is bigger than "1":

<?php

$test=2;

if ($test>=1) {

 trigger_error("Value must be 1 or below");

}

?>

The output of the code above should be something like this:

Notice: Value must be 1 or below

in C:\webfolder\test.php on line 6

An error can be triggered anywhere you wish in a script, and by adding a second parameter,

you can specify what error level is triggered.

Possible error types:

E_USER_ERROR - Fatal user-generated run-time error. Errors that can not be recovered

from. Execution of the script is halted

E_USER_WARNING - Non-fatal user-generated run-time warning. Execution of the script is

not halted

E_USER_NOTICE - Default. User-generated run-time notice. The script found something

that might be an error, but could also happen when running a script normally

Lecturer: khalidah ali ahmed web designs CH 4- Advance PHP
Lecturer: Zainab Khyioon Abd alrdha

8

Example

In this example an E_USER_WARNING occurs if the "test" variable is bigger than "1". If an

E_USER_WARNING occurs we will use our custom error handler and end the script:

<?php

//error handler function

function customError($errno, $errstr) {

 echo "Error: [$errno] $errstr
";

 echo "Ending Script";

 die();

}

//set error handler

set_error_handler("customError",E_USER_WARNING);

//trigger error

$test=2;

if ($test>=1) {

 trigger_error("Value must be 1 or below",E_USER_WARNING);

}

?>

The output of the code above should be something like this:

Error: [512] Value must be 1 or below

Ending Script

Now that we have learned to create our own errors and how to trigger them, lets take a look at

error logging.

9.8 Error Logging

By default, PHP sends an error log to the server's logging system or a file, depending on how

the error_log configuration is set in the php.ini file. By using the error_log() function you can

send error logs to a specified file or a remote destination. Sending error messages to yourself

by e-mail can be a good way of getting notified of specific errors.

9.9 Send an Error Message by E-Mail

In the example below we will send an e-mail with an error message and end the script, if a

specific error occurs:

Lecturer: khalidah ali ahmed web designs CH 4- Advance PHP
Lecturer: Zainab Khyioon Abd alrdha

9

<?php

//error handler function

function customError($errno, $errstr) {

 echo "Error: [$errno] $errstr
";

 echo "Webmaster has been notified";

 error_log("Error: [$errno] $errstr",1,

 "someone@example.com","From: webmaster@example.com");

}

//set error handler

set_error_handler("customError",E_USER_WARNING);

//trigger error

$test=2;

if ($test>=1) {

 trigger_error("Value must be 1 or below",E_USER_WARNING);

}

?>

The output of the code above should be something like this:

Error: [512] Value must be 1 or below

Webmaster has been notified

And the mail received from the code above looks like this:

Error: [512] Value must be 1 or below

This should not be used with all errors. Regular errors should be logged on the server using

the default PHP logging system.

10.1 What is an Exception

With PHP 5 came a new object oriented way of dealing with errors.

Exception handling is used to change the normal flow of the code execution if a specified

error (exceptional) condition occurs. This condition is called an exception.

This is what normally happens when an exception is triggered:

The current code state is saved

The code execution will switch to a predefined (custom) exception handler function

Lecturer: khalidah ali ahmed web designs CH 4- Advance PHP
Lecturer: Zainab Khyioon Abd alrdha

10

Depending on the situation, the handler may then resume the execution from the saved code

state, terminate the script execution or continue the script from a different location in the code

We will show different error handling methods:

Basic use of Exceptions

Creating a custom exception handler

Multiple exceptions

Re-throwing an exception

Setting a top level exception handler

Note: Exceptions should only be used with error conditions, and should not be used to jump to

another place in the code at a specified point.

10.2 Basic Use of Exceptions

When an exception is thrown, the code following it will not be executed, and PHP will try to

find the matching "catch" block. If an exception is not caught, a fatal error will be issued with

an "Uncaught Exception" message.

Lets try to throw an exception without catching it:

<?php

//create function with an exception

function checkNum($number) {

 if($number>1) {

 throw new Exception("Value must be 1 or below");

 }

 return true;

}

//trigger exception

checkNum(2);

?>

The code above will get an error like this:

Lecturer: khalidah ali ahmed web designs CH 4- Advance PHP
Lecturer: Zainab Khyioon Abd alrdha

11

Fatal error: Uncaught exception 'Exception'

with message 'Value must be 1 or below' in C:\webfolder\test.php:6

Stack trace: #0 C:\webfolder\test.php(12):

checkNum(28) #1 {main} thrown in C:\webfolder\test.php on line 6

10.3 Try, throw and catch

To avoid the error from the example above, we need to create the proper code to handle an

exception.

Proper exception code should include:

1. try - A function using an exception should be in a "try" block. If the exception does not

trigger, the code will continue as normal. However if the exception triggers, an

exception is "thrown"

2. throw - This is how you trigger an exception. Each "throw" must have at least one

"catch"

3. catch - A "catch" block retrieves an exception and creates an object containing the

exception information

Lets try to trigger an exception with valid code example:

<?php

//create function with an exception

function checkNum($number) {

 if($number>1) {

 throw new Exception("Value must be 1 or below");

 }

 return true;

} //trigger exception in a "try" block

try {

 checkNum(2);

 //If the exception is thrown, this text will not be shown

 echo 'If you see this, the number is 1 or below';

} //catch exception

catch(Exception $e) {

 echo 'Message: ' .$e->getMessage();

}

?>

Lecturer: khalidah ali ahmed web designs CH 4- Advance PHP
Lecturer: Zainab Khyioon Abd alrdha

12

Output: The code above will get an error like this:

 Message: Value must be 1 or below

Example explained:

The code above throws an exception and catches it:

The checkNum() function is created. It checks if a number is greater than 1. If it is, an

exception is thrown

The checkNum() function is called in a "try" block

The exception within the checkNum() function is thrown

The "catch" block retrieves the exception and creates an object ($e) containing the exception

information

The error message from the exception is echoed by calling $e->getMessage() from the

exception object

However, one way to get around the "every throw must have a catch" rule is to set a top level

exception handler to handle errors that slip through.

