Chapter Four Instructions Set

Register Register
Register Memory
Memory Register
Register Immediate
Memory Immediate
Accumulator Immediate

The process of comparison performed by the CMP instruction is basically a
subtraction operation. The source operand is subtracted from the destination
operand. However the result of this subtraction is not saved. Instead, based on

the result the appropriate flags are set or reset.

EXAMPLE: lets the destination operand equals 100110012 and that the source

operand equals 000110112. Subtraction the source from the destination, we get
YooY

R R IR R

Replacing the destination operand with its 2's complement and adding
10011001
+ 11100101
011111102
1. No carry is generated from bit 3 to bit 4, therefore, the auxiliary carry flag AF

is at logic 0.
2. There is a carry out from bit 7. Thus carry flag CF is set.
3. Even through a carry out of bit 7 is generated; there is no carry from bit 6 to

bit 7. This is an overflow condition and the OF flag is set.

10

Chapter Four Instructions Set

4.There are an even number of 1s, therefore, this makes parity flag PF equal to
1.
5.Bit 7 is zero and therefore sign flag SF is at logic 0.

6.The result that is produced is nonzero, which makes zero flag ZF logic 0.

3.JUMP Instruction
The purpose of a jump instruction is to alter the execution path of instructions
in the program. The code segment register and instruction pointer keep track
of the next instruction to be executed. Thus a jump instruction involves
altering the contents of these registers. In this way, execution continues at an
address other than that of the next sequential instruction. That is, a jump

occurs to another part of the program.
There two type of jump instructions:

a. Unconditional jump.

b. Conditional jump.

In an unconditional jump, no status requirements are imposed for the jump to

occur. That is, as the instruction is executed, the jump always takes place to

change the execution sequence. See Figure 16.

Unconditional JMP operand Jump is to the None
Jjump address
specified by

operand

11

Chapter Four Instructions Set

l Part 1|
JMP AA | <+— Unconditional Jump instruction

Part 11) f .
LLocations skipped due to jump

Next instruction executed

l AA XXX |=—

PART 111

Figure 16: Unconditional jump program sequence.

On the other hand, for a conditional jump instruction, status conditions that

exist at the moment the jump instruction is executed decide whether or not the
jump will occur. If this condition or conditions are met, the jump takes place,
otherwise execution continues with the next sequential instruction of the
program. The conditions that can be referenced by a conditional jump

instruction are status flags such as carry (CF), parity (PF), and overflow (OF).

See Figure 17

Conditional jump Jcc operand If the specific None
condition cc is true,
the jump to the
address specified by
the operand is
initiated, otherwise
the next instruction

is executed

12

Chapter Four Instructions Set

The following table lists some of the conditional jump instructions

JAE/JNB Jump if above or equal jump if not below
JB/INAE Jump if below/jump if not above or equal
JC Jump if carry

ICXZ Jump if CX is zero

JENZ Jump if equal/jump if zero

INC Jump if not carry

JNE/INZ Jump if not equal/ jump if not zero

JNO Jump if not overflow

INP/JPO Jump if parity/jump if parity odd

INS Jump if not sign
JO Jump if overflow

JP/JPE Jump if parity/jump if parity Even

IS Jump if sign

Part |

Conditional Jump instruction next

JCC AA <= instruction executed if condition not met

»

' XXXXX
Locations skipped 1f jump taken
Part 11

> AA XXX|e—

PART 1l

Figure 17: Conditional jump program sequence.

13

Chapter Four Instructions Set

EXAMPLE: write a program to move a block of N bytes of data starting at
offset address BLKI1ADDR to another block starting at offset address
BLK2ADDR. Assume that both blocks are in the same data segment, whose
starting point is defined by the data segment address DATASEGMADDR.
MOV AX, DATASEGADDR

MOV DS, AX

MOV SI, BLK1ADDR

MOV DI, BLK2ADDR

MOV CX, N

NXTPT: MOV AH, [SI]

MOV [DI], AH

INC SI

INC DI

DEC CX

INZ NXTPT

HLT

4.Push and POP Instruction
It is necessary to save the contents of certain registers or some other main
program parameters. These values are saved by pushing them onto the stack.
Typically, these data correspond to registers and memory locations that are
used by the subroutine.
The instruction that is used to save parameters on the stack is the push
(PUSH) instruction and that used to retrieve them back is the pop (POP)
instruction. Notice a general-purpose register, a segment register (excluding
CS), or a storage location in memory as their operand.

¢ Execution of a PUSH instruction causes the data corresponding to the

operand to be pushed onto the top of the stack. For instance, if the

instruction is PUSH AX the result is as follows:

14

Chapter Four Instructions Set

((SP)-1) +— (AH)

((SP)-2) «—— (AL)

(SP) <«—— (SP)-2
This shows that the two bytes of the AX are saved in the stack part of memory
and the stack pointer is decrement by 2 such that it points to the new top of the

stack.

¢ On the other hand, if the instruction is POP AX Its execution results in

(AL) ((SP))
(AH) ((SP) + 1)
(SP) (SP)+2

The saved contents of AX are restored back into the register.

% We also can save the contents of the flag register and if saved we will later
have to restore them. These operations can be accomplished with the push
flags (PUSHF) and pop flags (POPF) instructions, respectively. Notice the
PUSHF save the contents of the flag register on the top of the stack. On the
other hand, POPF returns the flags from the top of the stack to the flag

register.

PUSHF Push flags onto stack ((SP)) +—(flag) None

POPF Pop flags from stack (flag) «— ((SP)) OF, DF, IF, TF, SF,
ZF, AF, PF, CF

15

Chapter Four Instructions Set

5.String Instructions

The microprocessor is equipped with special instructions to handle string
operations. By "string" we mean a series of data words or bytes that reside in
consecutive memory locations. There are five basic string instructions in the

instruction set of the 8086, these instruction are:

a. Move byte or work string (MOVS, MOVSB, and MOVSW).
b. Compare string (CMPS).

c. Scan string (SCAS).

d. Load string (LODS)

e. Store string (STOS).

They are called the basic string instructions because each defines and operations

for one element of a string.

16

