
Lecture two object oriented programming lecturer khalida Ali Ahmed

1

1.8 Enumerations
A different approach to defining your own data type is the

enumeration they can simplify and clarify your programming.

1.8.1 Days of the Week Example

Enumerated types work when you know in advance a finite

(usually short) list of values that a data type can take on.

Here‟s an example program, DAYENUM, that uses an enumeration

for the days of the week:

#include <iostream.h>

//specify enum type

enum days_of_week { Sun, Mon, Tue, Wed, Thu, Fri, Sat };

int main()

{

days_of_week day1, day2; //define variables

day1 = Mon; //give values to

day2 = Thu; //variables

int diff = day2 - day1; //can do integer arithmetic

cout << “Days between = “ << diff << endl;

if(day1 < day2) //can do comparisons

cout << “day1 comes before day2\n”;

return 0;

}

You can‟t use values that weren‟t listed in the declaration. Such

statements as

day1 = halloween; are illegal.

You can use the standard arithmetic operators on enum types. In the

program we subtract two values. You can also use the comparison

operators, as we show.

Here‟s the program‟s output:
Days between = 3

day1 comes before day2

The use of arithmetic and relational operators doesn‟t make

much sense with some enum types. For example, if you have the

declaration

enum pets { cat, dog, hamster, canary, ocelot }; then it may not be

clear what expressions like dog + canary or (cat < hamster) mean.

Enumerations are treated internally as integers. This explains why

you can perform arithmetic and relational operations on them.

Lecture two object oriented programming lecturer khalida Ali Ahmed

2

Ordinarily the first name in the list is given the value 0, the next

name is given the value 1, and so on. In the DAYENUM example, the

values Sun through Sat are stored as the integer values 0–6.

1.8.2 One Thing or Another
Our next example counts the words in a phrase typed in by the

user. Unlike the earlier CHCOUNT example, however, it doesn‟t

simply count spaces to determine the number of words. Instead it

counts the places where a string of nonspace characters changes to a

space, as shown in Figure bellow:

#include <iostream.h>

#include <conio.h> //for getche()

enum itsaWord { NO, YES }; //NO=0, YES=1

int main()

{itsaWord isWord = NO; //YES when in a word,

//NO when in whitespace

char ch = „a‟; //character read from keyboard

int wordcount = 0; //number of words read

cout << “Enter a phrase:\n”;

do {ch = getche(); //get character

 if(ch==‟ „ || ch==‟\r‟) //if white space,

 {if(isWord == YES) //and doing a word,

{ //then it‟s end of word

wordcount++; //count the word

isWord = NO; //reset flag }

} //otherwise, it‟s

 else //normal character

if(isWord == NO) //if start of word,

 isWord = YES; //then set flag

 } while(ch != „\r‟); //quit on Enter key

cout << “\n---Word count is “ << wordcount << “---\n”;

return 0;

}

Lecture two object oriented programming lecturer khalida Ali Ahmed

3

Exercises

1. We said earlier that C++ I/O statements don‟t automatically

understand the data types of enumerations. Instead, the (>>) and

(<<) operators think of such variables simply as integers.

You can overcome this limitation by using switch statements to

translate between the user‟s way of expressing an enumerated

variable and the actual values of the enumerated variable. For

example, imagine an enumerated type with values that indicate an

employee type within an organization:

enum etype { laborer, secretary, manager, accountant, executive,

researcher };

Write a program that first allows the user to specify a type by

entering its first letter („l‟, „s‟, „m‟, and so on), then stores the type

chosen as a value of a variable of type enum etype, and finally

displays the complete word for this type.

Enter employee type (first letter only)

 laborer, secretary, manager,

 accountant, executive, researcher): a

Employee type is accountant.

You‟ll probably need two switch statements: one for input and one

for output.

1.9 Functions
A function groups a number of program statements into a unit

and gives it a name. This unit can then be invoked from other parts

of the program.

The most important reason to use functions is to reduce program

size. Any sequence of instructions that appears in a program more

than once is being made into a function.

1.9.1 Eliminating the Declaration

The second approach to inserting a function into a program is

to eliminate the function declaration and place the function

definition (the function itself) in the listing before the first call to the

function. For example, we could rewrite TABLE to produce TABLE2,

in which the definition for starline() appears first.

Lecture two object oriented programming lecturer khalida Ali Ahmed

4

1.9.2 Passing Arguments to Functions

An argument is a piece of data (an int value, for example)

passed from a program to the function. Arguments allow a function

to operate with different values, or even to do different things,

depending on the requirements of the program calling it.

1.9.2.1 Passing Constants

As an example, let‘s suppose we decide that the starline() function

in the last example is too rigid. Instead of a function that always

prints 45 asterisks, we want a function that will print any character

any number of times.

Here‘s a program, TABLEARG, that incorporates just such a

function. We use arguments to pass the character to be printed and

the number of times to print it.

#include <iostream.h>

void repchar(char, int); //function declaration

int main()

{

repchar(‗-‘, 43); //call to function

cout << ―Data type Range‖ << endl;

repchar(‗=‘, 23); //call to function

cout << ―char -128 to 127‖ << endl

<< ―short -32,768 to 32,767‖ << endl

<< ―int System dependent‖ << endl

<< ―double -2,147,483,648 to 2,147,483,647‖ << endl;

repchar(‗-‘, 43); //call to function

return 0;

}

//--

// repchar()

// function definition

void repchar(char ch, int n)

{

for(int j=0; j<n; j++)

cout << ch;

cout << endl;

}

The calling program supplies arguments, such as ‗–‘ and 43, to the

function.

The variables used within the function to hold the argument values

are called parameters; in repchar() they are ch and n.

Lecture two object oriented programming lecturer khalida Ali Ahmed

5

1.9.2.2 Passing Variables

In the TABLEARG example the arguments were constants: ‗–‘,

43, and so on.

Let‘s look at an example where variables, instead of

constants, are passed as arguments.

This program, VARARG, incorporates the same repchar()

function as did TABLEARG, but lets the user specify the

character and the number of times it should be repeated.

#include <iostream.h>

void repchar(char, int);

int main()

{

char chin;

int nin;

cout << ―Enter a character: ―;

cin >> chin;

cout << ―Enter number of times to repeat it: ―;

cin >> nin;

repchar(chin, nin);

return 0;

}

//--

void repchar(char ch, int n) //function declarator

{

for(int j=0; j<n; j++) //function body

cout << ch;

cout << endl;

}

Here‘s some sample interaction with VARARG:

Enter a character: +

Enter number of times to repeat it: 20

++++++++++++++++++++

1.9.3 Structures as Arguments

Entire structures can be passed as arguments to functions.

1.9.3.1 Passing a Distance Structure example:

Lecture two object oriented programming lecturer khalida Ali Ahmed

6

This example shows a function that uses an argument of type

Distance. The main() part of this program accepts two distances in

feet-and-inches format from the user, and places these values in two

structures, d1 and d2. It then calls a function, disp(), that takes a

Distance structure variable as an argument.

The purpose of the function is to display the distance passed to it in

the standard format, such as 10'–2.25''. Figure shows a structure

being passed as an argument to a function.

#include <iostream.h>

struct Distance //English distance

{ int feet;

float inches;

};

void disp(Distance); //declaration

int main()

{

Distance d1, d2; //define two lengths

cout << ―Enter feet: ―; cin >> d1.feet;

cout << ―Enter inches: ―; cin >> d1.inches;

cout << ―\nEnter feet: ―; cin >> d2.feet;

cout << ―Enter inches: ―; cin >> d2.inches;

cout << ―\nd1 = ―; disp(d1);

cout << ―\nd2 = ―; disp(d2);

Lecture two object oriented programming lecturer khalida Ali Ahmed

7

cout << endl;

return 0;

}

void disp(Distance dd) //parameter dd of type Distance

{

cout << dd.feet << ―\‘-‖ << dd.inches << ―\‖‖;

}

Here‘s some sample interaction with the program:

Enter feet: 6

Enter inches: 4

Enter feet: 5

Enter inches: 4.25

d1 = 6‘-4‖

d2 = 5‘-4.25‖

1.9.4 Returning Values from Functions

When a function completes its execution, it can return a single

value to the calling program. Usually this return value consists of an

answer to the problem the function has solved. The next example

demonstrates a function that returns a weight in kilograms after

being given a weight in pounds.

#include <iostream.h>

float lbstokg(float); //declaration

int main()

{

float lbs, kgs;

cout << ―\nEnter your weight in pounds: ―;

cin >> lbs;

kgs = lbstokg(lbs);

cout << ―Your weight in kilograms is ― << kgs << endl;

return 0;

}

float lbstokg(float pounds)

{

float kilograms = 0.453592 * pounds;

return kilograms;

}

Here‘s some sample interaction with this program:

Enter your weight in pounds: 182

Lecture two object oriented programming lecturer khalida Ali Ahmed

8

Your weight in kilograms is 82.553741

1.9.5 Returning Structure Variables

We‘ve seen that structures can be used as arguments to functions.

You can also use them as return values. Here‘s a program,

RETSTRC that incorporates a function that adds variables of type

Distance and returns a value of this same type:

#include <iostream.h>

struct Distance //English distance

{

int feet;

float inches;

};

Distance addengl(Distance, Distance); //declarations

void disp(Distance);

int main()

{ Distance d1, d2, d3; //define three lengths

cout << ―\nEnter feet: ―; cin >> d1.feet;

cout << ―Enter inches: ―; cin >> d1.inches;

cout << ―\nEnter feet: ―; cin >> d2.feet;

cout << ―Enter inches: ―; cin >> d2.inches;

d3 = addengl(d1, d2); //d3 is sum of d1 and d2

cout << endl;

disp(d1); cout << ― + ―; //display all lengths

disp(d2); cout << ― = ―;

disp(d3); cout << endl;

return 0; }

Distance addengl(Distance dd1, Distance dd2)

{ Distance dd3; //define a new structure for sum

dd3.inches = dd1.inches + dd2.inches; //add the inches

dd3.feet = 0; //(for possible carry)

if(dd3.inches >= 12.0) //if inches >= 12.0,

{ //then decrease inches

dd3.inches -= 12.0; //by 12.0 and

dd3.feet++; }

dd3.feet += dd1.feet + dd2.feet; //add the feet

return dd3; }

void disp(Distance dd)

{cout << dd.feet << ―\‘-‖ << dd.inches << ―\‖‖;

}

Lecture two object oriented programming lecturer khalida Ali Ahmed

9

The program asks the user for two lengths, in feet-and-

inches format, adds them together by calling the function

addengl(), and displays the results using the engldisp()

function introduced in the LDISP program.

Here‘s some output from the program:

Enter feet: 4

Enter inches: 5.5

Enter feet: 5

Enter inches: 6.5

4‘-5.5‖ + 5‘-6.5‖ = 10‘-0‖

1.9.6 Reference Arguments

A reference provides a different name—for a variable. One of

the most important uses for references is in passing arguments to

functions. We‘ve seen examples of function arguments passed by

value. When arguments are passed by value, the called function

creates a new variable of the same type as the argument and copies

the argument‘s value into it. As we noted, the function cannot

access the original variable in the calling program, only the copy it

created. Passing arguments by value is useful when the function

does not need to modify the original variable in the calling program.

In fact, it offers insurance that the function cannot harm the original

variable. Passing arguments by reference uses a different

mechanism. Instead of a value being passed to the function, a

reference to the original variable, in the calling program, is passed.

(It‘s actually the memory address of the variable that is passed.) An

important advantage of passing by reference is that the function can

access the actual variables in the calling program.

Among other benefits, this provides a mechanism for passing

more than one value from the function back to the calling program.

Suppose you have pairs of numbers in your program and you want to

be sure that the smaller one always precedes the larger one. To do

this you call a function, order(), which checks two numbers passed

to it by reference and swaps the originals if the first is larger than

the second.

#include <iostream.h>

int main()

{void order(int&, int&); //prototype

int n1=99, n2=11; //this pair not ordered

Lecture two object oriented programming lecturer khalida Ali Ahmed

11

int n3=22, n4=88; //this pair ordered

order(n1, n2); //order each pair of numbers

order(n3, n4);

cout << ―n1=‖ << n1 << endl; //print out all numbers

cout << ―n2=‖ << n2 << endl;

cout << ―n3=‖ << n3 << endl;

cout << ―n4=‖ << n4 << endl;

return 0;

}

void order(int& numb1, int& numb2) //orders two numbers

{

if(numb1 > numb2) //if 1st larger than 2nd,

{int temp = numb1; //swap them

numb1 = numb2;

numb2 = temp;}

}

In main() there are two pairs of numbers—the first pair is not

ordered and the second pair is ordered. The order() function is

called once for each pair, and then all the numbers are printed out.

The output reveals that the first pair has been swapped while the

second pair hasn‘t.

 Here it is:

n1=11

n2=99

n3=22

n4=88

1.9.10 Passing Structures by Reference

You can pass structures by reference just as you can simple data

types. A scale conversion involves multiplying a group of distances

by a factor. If a distance is 6'–8'', and a scale factor is 0.5, the new

distance is 3'–4''. Such a conversion might be applied to all the

dimensions of a building to make the building shrink but remain in

proportion.

#include <iostream.h>

struct Distance

{ int feet;

float inches; };

void scale(Distance&, float);

void engldisp(Distance);

Lecture two object oriented programming lecturer khalida Ali Ahmed

11

int main()

{ Distance d1 = { 12, 6.5 };

 Distance d2 = { 10, 5.5 };

 cout << ―d1 = ―; engldisp(d1);

 cout << ―\nd2 = ―; engldisp(d2);

 scale(d1, 0.5); //scale d1 and d2

 scale(d2, 0.25);

 cout << ―\nd1 = ―; engldisp(d1);

 cout << ―\nd2 = ―; engldisp(d2);

 cout << endl;

 return 0; }

void scale(Distance& dd, float factor)

 { float inches = (dd.feet*12 + dd.inches) * factor;

 dd.feet = (inches / 12);

 dd.inches = inches - dd.feet * 12;

}

void engldisp(Distance dd)

 {

 cout << dd.feet << ―\‘-‖ << dd.inches << ―\‖‖;

}

REFERST initializes two Distance variables—d1 and d2—to specific

values, and displays them. Then it calls the scale() function to

multiply d1 by 0.5 and d2 by 0.25.

Finally, it displays the resulting values of the distances. Here‘s

the program‘s output:

d1 = 12‘-6.5‖

d2 = 10‘-5.5‖

d1 = 6‘-3.25‖

d2 = 2‘-7.375‖

Here are the two calls to the function scale():

scale(d1, 0.5);

scale(d2, 0.25);

Exercises

1. Refer to the CIRCAREA program in Chapter 2, ―C++ Programming

Basics.‖ Write a function called circarea() that finds the area of a

circle in a similar way. It should take an argument of type float and

return an argument of the same type. Write a main() function that

Lecture two object oriented programming lecturer khalida Ali Ahmed

12

gets a radius value from the user, calls circarea(), and displays the

result.

2. Raising a number n to a power p is the same as multiplying n by

itself p times. Write a function called power() that takes a double

value for n and an int value for p, and returns the result as a double

value. Use a default argument of 2 for p, so that if this argument is

omitted, the number n will be squared. Write a main() function that

gets values from the user to test this function.

Solutions to Exercises

1.

// ex5_1.cpp

// function finds area of circle

#include <iostream.H>

float circarea(float radius);

int main()

{

double rad;

cout << ―\nEnter radius of circle: ―;

cin >> rad;

cout << ―Area is ― << circarea(rad) << endl;

return 0;

}

//--

float circarea(float r)

{

const float PI = 3.14159;

return r * r * PI;

}

2.

#include <iostream.h>

double power(double n, int p=2); //p has default value 2

int main()

{

double number, answer;

int pow;

char yesorno;

cout << ―\nEnter number: ―; //get number

cin >> number;

cout << ―Want to enter a power (y/n)? ―;

cin >> yesorno;

Lecture two object oriented programming lecturer khalida Ali Ahmed

13

if(yesorno == ‗y‘) //user wants a non-2 power?

{cout << ―Enter power: ―;

cin >> pow;

answer = power(number, pow); //raise number to pow}

else

answer = power(number); //square the number

cout << ―Answer is ― << answer << endl;

return 0;

}

double power(double n, int p)

{double result = 1.0; //start with 1

for(int j=0; j<p; j++) //multiply by n

result *= n; //p times

return result;

}

