
Lecture 3 Object Oriented Programming Lecturer khalida ali Ahmed

1

 3.1 Object –Oriented Programming Paradigms

The object-oriented approach to programming is an easy way to

master the management and complexity in developing software systems

that take advantage of the strengths of data abstraction. Data-driven

methods of programming provide a disciplined approach to the problems

of data abstraction, resulting in the development of object-based

languages that support only data abstraction. These object-based

languages do not support the features of the object-oriented paradigm,

such as inheritance or polymorphism. Depending on the object features

supported, there are two categories of object languages:

1. Object-Based Programming Languages

2. Object-Oriented Programming Languages

Object-based programming languages support encapsulation and

object identity (unique property to differentiate it from other objects)

without supporting important features of OOP languages such as

polymorphism, inheritance, and message based communication, although

these features may be emulated to some extent. Ada, C, and Haskell are

three examples of typical object-based programming languages.

Object-based language = Encapsulation + Object Identity

 Object-oriented languages incorporate all the features of object-

based programming languages, along with inheritance and

polymorphism. Therefore, an object-oriented programming language is

defined by the following statement:

Object-oriented language = Object-based features + Inheritance +

Polymorphism

Object-oriented programming languages for projects of any size

use modules to represent the physical building blocks of these languages.

A module is a logical grouping of related declarations, such as objects

Or procedures, and replaces the traditional concept of subprograms that

existed in earlier languages.

Lecture 3 Object Oriented Programming Lecturer khalida ali Ahmed

2

The following are important features in object-oriented programming and

design:

1. Improvement over the structured programming paradigm.

2. Emphasis on data rather than algorithms.

3. Procedural abstraction is complemented by data abstraction.

4. Data and associated operations are unified, grouping objects with

common attributes, operations, and semantics.

Programs are designed around the data on which it is being

operated, rather than the operations themselves. Decomposition, rather

than being algorithmic, is data-centric. Clear understanding of classes

and objects are essential for learning object-oriented development. The

concepts of classes and objects help in the understanding of object model

and realizing its importance in solving complex problems.

Object-oriented technology is built upon object models. An Object

is anything having crisply defined conceptual boundaries. Book, pen,

train, employee, student, machine, etc., are examples of objects. But the

Entities that do not have crisply defined boundaries are not objects.

Beauty, river, sky, etc., are not objects.

Model is the description of a specific view of a real-world problem

domain showing those aspects, which are considered to be important to

the observer (user) of the problem domain. Object-oriented programming

language directly influences the way in which we view the world. It uses

the programming paradigm to address the problems in everyday life. It

addresses thue solution closer to the problem domain.

Object model is defined by means of classes and objects. The

development of programs using object model is known as object-oriented

development. To learn object-oriented programming concepts, it is very

important to view the problem from the user’s perspective and model the

solution using object model.

Lecture 3 Object Oriented Programming Lecturer khalida ali Ahmed

3

 3.2 Classes and Objected.

The concepts of object-oriented technology must be represented in

object-oriented programming languages. Only then, complex problems

can be solved in the same manner as they are solved in real-world

situations. OOP languages use classes and objects for representing the

concepts of abstraction and encapsulation. The mapping of abstraction to

a program is shown in Fig. 1.

Fig. 1 mapping real world entity to object oriented programming

The software structure that supports data abstraction is known as

class. A class is a data type capturing the essence of an abstraction. It is

characterized by a number of features. The class is a prototype or blue

print or model that defines different features. A feature may be a data or

an operation. Data are represented by instance variables or data variables

in a class. The operations are also known as behaviors, or methods,

or functions. They are represented by member functions of a class in C++

and methods in Java and C#.

A class is a data type and hence it cannot be directly manipulated.

It describes a set of objects. For example, apple is a fruit implies that

apple is an example of fruit. The term “fruit” is a type of food and apple

is an instance of fruit. Likewise, a class is a type of data (data type) and

object is an instance of class. Similarly car represents a class (a model of

vehicle) and there are a number of instances of car. Each instance of car

Properties

Operations

 خ

Data

Functions

Entity

Real world Abstractions

 world

Object Orientated Programming

CLASS

Lecture 3 Object Oriented Programming Lecturer khalida ali Ahmed

4

is an object and the class car does not physically mean a car. An object is

also known as class variable because it is created by the class data type.

Actually, each object in an object-oriented system corresponds to a real-

world thing, which may be a person, or a product, or an entity. The

differences between class and object are given in Table 1.1.

Table 1.1 Comparisons of Class and Object

Class Object

Class is a data type. Object is an instance of class data

type.

It generates object. It gives life to a class.

It is the prototype or model. It is a container for storing its features.

Does not occupy memory location. It occupies memory location.

It cannot be manipulated because It can be manipulated.

it is not available in the memory.

Instantiation of an object is defined as the process of creating an object of

a particular class.

An object has:

1. States or properties.

2. Operations.

4. Identity.

Properties maintain the internal state of an object. Operations

provide the appropriate functionality to the object. Identity differentiates

one object from the other. Object name is used to identify the object.

Hence, object name itself is an identity. Sometimes, the object name is

mixed with a property to differentiate two objects. For example,

differentiation of two similar types of cars, say MARUTI 800 may be

differentiated by colors. If colors are also same, the registration number is

used. Unique identity is important and hence the property reflecting

unique identity must be used in an object.

Lecture 3 Object Oriented Programming Lecturer khalida ali Ahmed

5

3.3 FEATURES OF OBJECT-ORIENTED PROGRAMMING

The fundamental features of object-oriented programming are as follows:

1. Encapsulation

2. Data Abstraction

3. Inheritance

4. Polymorphism

3.3.1 Encapsulation

The process, or mechanism, by which you combine code and the

data it manipulates into a single unit, is commonly referred to as

encapsulation. Encapsulation provides a layer of security around

manipulated data, protecting it from external interference and misuse. In

Java, this is supported by classes and objects.

3.3.2 Data Abstraction

Real-world objects are very complex and it is very difficult to

capture the complete details. Hence, OOP uses the concepts of abstraction

and encapsulation. Abstraction is a design technique that focuses on the

essential attributes and behavior. It is a named collection of essential

attributes and behavior relevant to programming a given entity for a

specific problem domain, relative to the perspective of the user.

A simple view of an object is a combination of properties and

behavior. The method name with arguments represents the interface of an

object. The interface is used to interact with the outside world.

Object-oriented programming is a packaging technology. Objects

encapsulate data and behavior hiding the details of implementation. The

concept of implementation hiding is also known as information hiding.

Since data is important, the users cannot access this data directly. Only

the interfaces (methods) can access or modify the encapsulated data.

Thus, data hiding is also achieved. The restriction of access to data within

an object to only those methods defined by the object’s class is known as

encapsulation. Also, implementation is independently done improving

software reuse concept. Interface encapsulates knowledge about the

object. Encapsulation is an abstract concept. Show below gives a clear

picture about the different concepts.

Lecture 3 Object Oriented Programming Lecturer khalida ali Ahmed

6

 3.3.2.1 Comparison of Abstraction and Encapsulation

Abstraction

1. Abstraction separates interface and implementation.

2. User knows only the interfaces of the object and how to use them

according to abstraction. Thus, it provides access to a specific part

of data.

3. Abstraction gives the coherent picture of what the user wants to

know. The degree of relatedness of an encapsulated unit is defined

as cohesion. High cohesion is achieved by means of good

abstraction.

4. Abstraction is defined as a data type called class which separates

interface from implementation.

5. The ability to encapsulate and isolate design from execution

information is known as abstraction.

Encapsulation

1. Encapsulation groups related concepts into one item.

2. Encapsulation hides data and the user cannot access the same

directly (data hiding).

3. Coupling means dependency. Good systems have low coupling.

Encapsulation results in lesser dependencies of one object on other

objects in a system that has low coupling. Low coupling may be

achieved by designing a good encapsulation.

4. Encapsulation packages data and functionality and hides the

implementation details (information hiding).

5. Encapsulation is a concept embedded in abstraction.

Classes and objects represent abstractions in OOP languages. Class

is a common representation with definite attributes and operations having

a unique name. Class can be viewed as a user-defined data type.

Is a declaration of variables in C. This statement conveys to the

compiler that year and mark are instances of integer data type. Likewise,

in OOP, a class is a data type. A variable of a class data type is known as

an object. An object is defined as an instance of a class. For example, if

Book is a defined class,

Book c Book, java Book ;

Lecture 3 Object Oriented Programming Lecturer khalida ali Ahmed

7

Declares the variables c Book and java Book of the Book class

type. Thus, classes are software prototypes for objects. Creation of a class

variable or an object is known as instantiation (creation of an instance of

a class). The objects must be allocated in memory. Classes cannot be

allocated in memory.

3.4 Inheritance

Inheritance allows the extension and reuse of existing code,

without having to repeat or rewrite the code from scratch. Inheritance

involves the creation of new classes, also called derived classes, from

existing classes (base classes). Allowing the creation of new classes

enables the existence of a hierarchy of classes that simulates the class and

subclass concept of the real world. The new derived class inherits the

members of the base class and also adds its own. For example, a banking

system would expect to have customers, of which we keep information

such as name, address, etc. A subclass of customer could be customers

who are students, where not only we keep their name and address, but we

also track the educational institution they are enrolled in. Inheritance is

mostly useful for two programming strategies: extension and

specialization. Extension uses inheritance to develop new classes from

existing ones by adding new features. Specialization makes use of

inheritance to refine the behavior of a general class.

3.5 Multiple Inheritance

When a class is derived through inheriting one or more base

classes, it is being supported by multiple inheritance. Instances of classes

using multiple inheritance have instance variables for each of the

inherited base classes. However, which to some extent appears like a

realization of multiple inheritance.

3.6 Polymorphism

Polymorphism allows an object to be processed differently by data

types and or data classes. More precisely, it is the ability for different

objects to respond to the same message in different ways. It allows a

single name or operator to be associated with different operations,

depending on the type of data it has passed, and gives the ability to

redefine a method within a derived class.

