
Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 1

1.5 Objects as Function Arguments

Our next program adds some new aspects of classes: constructor overloading,

defining member functions outside the class, and—perhaps most importantly—objects

as function arguments. Here‟s the listing for ENGLCON:

// englcon.cpp

// constructors, adds objects using member function

#include <iostream.h>

 class Distance //English Distance class

 { private:

 int feet;

 float inches;

 public: //constructor (no args)

 Distance() : feet(0), inches(0.0)

 { }

 Distance(int ft, float in) : feet(ft), inches(in) //constructor (two args)

 { }

 void getdist() //get length from user

 {

 cout << "\nEnter feet: "; cin >> feet;

 cout << "Enter inches: "; cin >> inches;

 }

 void showdist() //display distance

 { cout << feet << "\'-" << inches << '\"';}

 void Distance::add_dist(Distance d2, Distance d3)

 { inches = d2.inches + d3.inches; //add the inches

 feet = 0; //(for possible carry)

 if(inches >= 12.0) //if total exceeds 12.0,

 { //then decrease inches

 inches -= 12.0; //by 12.0 and

 feet++; //increase feet

 } //by 1

 feet += d2.feet + d3.feet;

 } //add the feet

 };

main()

 { Distance dist1, dist3; //define two lengths

 Distance dist2(11, 6.25); //define and initialize dist2

 dist1.getdist(); //get dist1 from user

 dist3.add_dist(dist1, dist2); //dist3 = dist1 + dist2 //display all lengths

 cout << "\ndist1 = "; dist1.showdist();

 cout << "\ndist2 = "; dist2.showdist();

 cout << "\ndist3 = "; dist3.showdist();

 cout << endl; }

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 2

This program starts with a distance dist2 set to an initial value and adds to it a

distance dist1, whose value is supplied by the user, to obtain the sum of the distances. It

then displays all three distances:

Enter feet: 17

Enter inches: 5.75

dist1 = 17‟-5.75”

dist2 = 11‟-6.25”

dist3 = 29‟-0”

1.6 Overloaded Constructors

It‟s convenient to be able to give variables of type Distance a value when they are

first created. That is, we would like to use definitions like:

 Distance width(5, 6.25);

which defines an object, width, and simultaneously initializes it to a value of 5 for feet

and 6.25 for inches. To do this we write a constructor like this:

 Distance(int ft, float in) : feet(ft), inches(in) { }

This sets the member data feet and inches to whatever values are passed as arguments to

the constructor. So far so good. However, we also want to define variables of type

Distance without initializing them, as we did in ENGLOBJ.

 Distance dist1, dist2;

In that program there was no constructor, but our definitions worked just fine.

How could they work without a constructor? Because an implicit no-argument

constructor is built into the program automatically by the compiler, and it‟s this

constructor that created the objects, even though we didn‟t define it in the class.

This no-argument constructor is called the default constructor. Often we want to

initialize data members in the default (no-argument) constructor as well. If we let the

default constructor do it, we don‟t really know what values the data members may be

given. If we care what values they may be given, we need to explicitly define the

constructor. In ENGLECON we show how this looks:

Distance() : feet(0), inches(0.0) //default constructor { }

The data members are initialized to constant values, in this case the integer value 0

and the float value 0.0, for feet and inches respectively. Now we can use objects

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 3

initialized with the no-argument constructor and be confident that they represent no

distance (0 feet plus 0.0 inches) rather than some arbitrary value.

Since there are now two explicit constructors with the same name, Distance(), we

say the constructor is overloaded. Which of the two constructors is executed when an

object is created depends on how many arguments are used in the definition:

Distance length; // calls first constructor

Distance width(11, 6.0); // calls second constructor

1.7 Member Functions Defined Outside the Class

In ENGLCON the add_dist() function is defined following the class definition.

//add lengths d2 and d3

void Distance::add_dist(Distance d2, Distance d3)

{

 inches = d2.inches + d3.inches; //add the inches

 feet = 0; //(for possible carry)

 if(inches >= 12.0) //if total exceeds 12.0,

 { //then decrease inches

 inches -= 12.0; //by 12.0 and

 feet++; //increase feet

 } //by 1

 feet += d2.feet + d3.feet; //add the feet

}

The declarator in this definition contains some unfamiliar syntax. The

function name, add_dist(), is preceded by the class name, Distance, and a new

symbol—the double colon (::). This symbol is called the scope resolution

operator. It is a way of specifying what something is associated with.

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 4

The scope resolution operator

1.8 Objects as Arguments

Now we can see how ENGLCON works. The distances dist1 and dist3 are created

using the default constructor (the one that takes no arguments).

The distance dist2 is created with the constructor that takes two arguments, and is

initialized to the values passed in these arguments. A value is obtained for dist1 by

calling the member function getdist(), which obtains values from the user.

Now we want to add dist1 and dist2 to obtain dist3. The function call in main()

dist3.add_dist(dist1, dist2); does this. The two distances to be added, dist1 and dist2, are

supplied as arguments to add_dist().

The object name is supplied as the argument. Since add_dist() is a member

function of the Distance class, it can access the private data in any object of class

Distance supplied to it as an argument, using names like dist1.inches and dist2.feet.Close

examination of add_dist() emphasizes some important truths about member functions.

A member function is always given access to the object for which it was called: the object

connected to it with the dot operator. But it may be able to access other objects. In the

following statement in ENGLCON, what objects can add_dist() access?

dist3.add_dist(dist1, dist2);

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 5

Besides dist3, the object for which it was called, it can also access dist1 and dist2,

because they are supplied as arguments. Notice that the result is not returned by the

function. The return type of add_dist() is void. The result is stored automatically in the

dist3 object. Figure bellow shows the two distances dist1 and dist2 being added together,

with the result stored in dist3.

1.9 The Default Copy Constructor

We‟ve seen two ways to initialize objects. A no-argument constructor can initialize

data members to constant values, and a multi-argument constructor can initialize data

members to values passed as arguments. Let‟s mention another way to initialize an

object: you can initialize it with another object of the same type. Surprisingly, you don‟t

need to create a special constructor for this; one is already built into all classes. It‟s

called the default copy constructor. It‟s a one argument constructor whose argument is

an object of the same class as the constructor. The ECOPYCON program shows how

this constructor is used.

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 6

// ecopycon.cpp

// initialize objects using default copy constructor

#include <iostream.h>

class Distance //English Distance class

{

 private:

 int feet;

 float inches;

public:

 //constructor (no args)

 Distance() : feet(0), inches(0.0)

 { }

 //Note: no one-arg constructor

 //constructor (two args)

 Distance(int ft, float in) : feet(ft), inches(in)

 { }

 void getdist() //get length from user

 {

 cout << “\nEnter feet: “; cin >> feet;

 cout << “Enter inches: “; cin >> inches;

 }

 void showdist() //display distance

 { cout << feet << “\‟-” << inches << „\”‟; }

};

int main()

{

 Distance dist1(11, 6.25); //two-arg constructor

 Distance dist2(dist1); //one-arg constructor

 Distance dist3 = dist1; //also one-arg constructor

 //display all lengths

 cout << “\ndist1 = “; dist1.showdist();

 cout << “\ndist2 = “; dist2.showdist();

 cout << “\ndist3 = “; dist3.showdist();

 cout << endl;

 return 0;

}

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 7

1.9.1 Returning Objects from Functions

In the ENGLCON example, we saw objects being passed as arguments to

functions. Now we‟ll see an example of a function that returns an object. We‟ll modify

the ENGLCON program to produce ENGLRET:

// englret.cpp

// function returns value of type Distance

#include <iostream.h>

class Distance //English Distance class

{ private:

 int feet;

 float inches;

 public: //constructor (no args)

 Distance() : feet(0), inches(0.0)

 { } //constructor (two args)

 Distance(int ft, float in) : feet(ft), inches(in)

 { }

 void getdist() //get length from user

 {

 cout << "\nEnter feet: "; cin >> feet;

 cout << "Enter inches: "; cin >> inches; }

 void showdist() //display distance

 { cout << feet << "\'-" << inches << '\"'; } //Distance add_dist(Distance);

 //add this distance to d2, return the sum

 Distance Distance::add_dist(Distance d2)

 { Distance temp; //temporary variable

 temp.inches = inches + d2.inches; //add the inches

 if (temp.inches >= 12.0) //if total exceeds 12.0,

 { temp.inches -= 12.0;

 temp.feet = 1; }

 temp.feet += feet + d2.feet; //add the feet

 return temp; }

};

int main()

{ Distance dist1, dist3; //define two lengths

 Distance dist2(11, 6.25); //define, initialize dist2

 dist1.getdist(); //get dist1 from user

 dist3 = dist1.add_dist(dist2); //dist3 = dist1 + dist2 //display all lengths

 cout << "\ndist1 = "; dist1.showdist();

 cout << "\ndist2 = "; dist2.showdist();

 cout << "\ndist3 = "; dist3.showdist();

 cout << endl;

 return 0;

}

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 8

The result isstored in temp and accessed as temp.feet and temp.inches. The temp

object is then returned by the function using the statement return temp; and the

statement in main() assigns it to dist3. Notice that dist1 is not modified; it simply supplies

data to add_dist(). Figure bellow shows how this looks.

Result returned from the temporary object

