
6.1 Operator overloading
Operator overloading is one of the most exciting features of

object-oriented programming. It can transform complex, obscure

program listings into intuitively obvious ones. For example, statements

like d3.addobjects(d1, d2); or the similar but equally obscure d3 =

d1.addobjects(d2); can be changed to the much more readable d3 = d1 +

d2; The rather forbidding term operator overloading refers to giving

the normal C++ operators, such as +, *, <=, and +=, additional meanings

when they are applied to user-defined data types. Normally a = b + c;

works only with basic types such as int and float, and attempting to

apply it when a, b, and care objects of a user-defined class will cause

complaints from the compiler. However, using overloading, you can

make this statement legal even when a, b, and c are user-defined types.

6.1.1 Overloading Unary Operators
Let’s start off by overloading a unary operator. Examples of

unary operators are the increment and decrement operators ++ and --,

and the unary minus, as in -33. In the COUNTER example “Objects

and Classes,” we created a class Counter to keep track of a count.

Objects of that class were incremented by calling a member function:

c1.inc_count();That did the job, but the listing would have been more

readable if we could have used the increment operator ++ instead:

++c1; Let’s rewrite COUNTER to make this possible. Here’s the listing

for COUNTPP1:

// countpp1.cpp// increment counter variable with ++ operator

#include <iostream.h>

class Counter

 {

private:

int count; //count

public:

Counter() : count(0) { } //constructor

int ret_count() //return count

{ return count; }

void operator ++ () //increment (prefix)

{++count;}

};

int main()

{Counter c1, c2; //define and initialize

cout << “\nc1=” << c1.ret_count(); //display

cout << “\nc2=” << c2.ret_count();

++c1; //increment c1

++c2; //increment c2

++c2; //increment c2

cout << “\nc1=” << c1.ret_count(); //display again

cout << “\nc2=” << c2.ret_count() << endl;

return 0;

}

In this program we create two objects of class Counter: c1 and c2.

The counts in the objects are displayed; they are initially 0. Then, using

the overloaded ++ operator, we increment c1 once and c2 twice, and

display the resulting values. Here’s the program’s output:

c1=0 counts are initially 0

c2=0

c1=1 incremented once

c2=2 incremented twice

The statements responsible for these operations are

 ++c1;

++c2;

++c2;

The ++ operator is applied once to c1 and twice to c

6.2 The operator Keyword
How do we teach a normal C++ operator to act on a user-defined

operand? The keyword operator is used to overload the ++ operator in

this declarator: void operator ++ ().The return type (void in this case)

comes first, followed by the keyword operator, followed by the operator

itself (++), and finally the argument list enclosed in parentheses (which

are empty here). This declarator syntax tells the compiler to call this

member function whenever the ++ operator is encountered, provided

the operand (the variable operated on by the ++) is of type Counter. We

saw “Functions,” that the only way the compiler can distinguish

between overloaded functions is by looking at the data types and the

number of their arguments. In the same way, the only way it can

distinguish between overloaded operators is by looking at the data type

of their operands. If the operand is a basic type such as an int, as in

++intvar; then the compiler will use its built-in routine to increment an

int. But if the operand is a Counter variable, the compiler will know to

use our user-written operator++() instead.

6.2.1 Operator Arguments
In main() the ++ operator is applied to a specific object, as in the

expression ++c1. Yet operator++() takes no arguments. What does this

operator increment? It increments the count data in the object of which

it is a member. Since member functions can always access the particular

object for which they’ve been invoked, this operator requires no

arguments.

 This is shown in Figure 1.

6.2.2 Operator Return Values
The operator++() function in the COUNTPP1 program has a

subtle defect. You will discover it if you use a statement like this in

main():

c1 = ++c2;

The compiler will complain. Why? Because we have defined the

++ operator to have a return type of void in the operator++() function,

while in the assignment statement it is being asked to return a variable

of type Counter. That is, the compiler is being asked to return whatever

value c2 has after being operated on by the ++ operator, and assign this

value to c1. So as defined in COUNTPP1, we can’t use ++ to increment

Counter objects in assignments; it must always stand alone with its

operand. Of course the normal ++ operator, applied to basic data types

such as int, would not have this problem. To make it possible to use our

homemade operator++() in assignment expressions, we must provide a

way for it to return a value. The next program, COUNTPP2, does just

that.

// countpp2.cpp
// increment counter variable with ++ operator, return value

#include <iostream.h>

class Counter

{

private:

int count; //count

public:

Counter() : count(0) //constructor

{ }

int ret_count() //return count

{ return count; }

Counter operator ++ () //increment count

{

++count; //increment count

Counter temp; //make a temporary Counter

temp.count = count; //give it same value as this obj

return temp; //return the copy

}

};

int main()

{

Counter c1, c2; //c1=0, c2=0

cout << “\nc1=” << c1.ret_count(); //display

cout << “\nc2=” << c2.ret_count();

++c1; //c1=1

c2 = ++c1; //c1=2, c2=2

cout << “\nc1=” << c1.ret_count(); //display again

cout << “\nc2=” << c2.ret_count() << endl;

return 0;

}

Here the operator++() function creates a new object of type

Counter, called temp, to use as a return value. It increments the count

data in its own object as before, then creates the new temp object and

assigns count in the new object the same value as in its own object.

Finally, it returns the temp object. This has the desired effect.

Expressions like
 ++c1

now return a value, so they can be used in other expressions, such

as
c2 = ++c1;

as shown in main(), where the value returned from c1++ is

assigned to c2. The output from this program is
c1=0

c2=0

c1=2

c2=2

6.3 Nameless Temporary Objects
In COUNTPP2 we created a temporary object of type Counter,

named temp, whose sole purpose was to provide a return value for the

++ operator. This required three statements.

 Counter temp; // make a temporary Counter object

temp.count = count; // give it same value as this object

return temp; // return it

There are more convenient ways to return temporary objects

from functions and overloaded operators. Let’s examine another

approach, as shown in the program COUNTPP3:

// countpp3.cpp

// increment counter variable with ++ operator

// uses unnamed temporary object

#include <iostream.h>

class Counter

{

private:

unsigned int count; //count

public:

Counter() : count(0) //constructor no args

{ }

Counter(int c) : count(c) //constructor, one arg

{ }

int ret_count() //return count

{ return count; }

Counter operator ++ () //increment count

{

++count; // increment count, then return

return Counter(count); // an unnamed temporary object

} // initialized to this count

};

int main()

{

Counter c1, c2; //c1=0, c2=0

cout << “\nc1=” << c1.ret_count(); //display

cout << “\nc2=” << c2.ret_count();

++c1; //c1=1

c2 = ++c1; //c1=2, c2=2

cout << “\nc1=” << c1.ret_count(); //display again

cout << “\nc2=” << c2.ret_count() << endl;

return 0;

}

In this program a single statement return Counter (count); does

what all three statements did in COUNTPP2. This statement creates an

object of type Counter. This object has no name; it won’t be around

long enough to need one. This unnamed object is initialized to the value

provided by the argument count. But wait: Doesn’t this require a

constructor that takes one argument? It does, and to make this

statement work we sneakily inserted just such a constructor into the

member function list in COUNTPP3.

 Counter (int c): count(c) //constructor, one arg

 { }

Once the unnamed object is initialized to the value of count, it can

then be returned. The output of this program is the same as that of

COUNTPP2. The approaches in both COUNTPP2 and COUNTPP3

involve making a copy of the original object (the object of which the

function is a member), and returning the copy.

6.4 Postfix Notation
So far we’ve shown the increment operator used only in its prefix

form. ++c1 What about postfix, where the variable is incremented after

its value is used in the expression?

c1++

To make both versions of the increment operator work, we define

two overloaded ++ operators, as shown in the POSTFIX program:

// postfix.cpp

// overloaded ++ operator in both prefix and postfix

#include <iostream.h>

class Counter

{

private:

unsigned int count; //count

public:

Counter() : count(0) //constructor no args

{ }

Counter(int c) : count(c) //constructor, one arg

{ }

int get_count() const //return count

{ return count; }

Counter operator ++ () //increment count (prefix)

{ //increment count, then return

return Counter(++count); //an unnamed temporary object

} //initialized to this count

Counter operator ++ (int) //increment count (postfix)

{ //return an unnamed temporary

return Counter(count++); //object initialized to this

} //count, then increment count

};

int main()

{

Counter c1, c2; //c1=0, c2=0

cout << “\nc1=” << c1.get_count(); //display

cout << “\nc2=” << c2.get_count();

++c1; //c1=1

c2 = ++c1; //c1=2, c2=2 (prefix)

cout << “\nc1=” << c1.get_count(); //display

cout << “\nc2=” << c2.get_count();

c2 = c1++; //c1=3, c2=2 (postfix)

cout << “\nc1=” << c1.get_count(); //display again

cout << “\nc2=” << c2.get_count() << endl;

return 0;

}

Now there are two different declarators for overloading the ++

operator. The one we’ve seen before, for prefix notation, is

Counter operator ++ ()

The new one, for postfix notation, is

Counter operator ++ (int)

The only difference is the int in the parentheses. This int isn’t really an

argument, and it doesn’t mean integer. It’s simply a signal to the

compiler to create the postfix version of the operator. Here’s the output

from the program:

c1=0

c2=0

c1=2

c2=2

c1=3

c2=2

We saw the first four of these output lines in COUNTPP2 and

COUNTPP3. But in the last two lines we see the results of the statement

c2=c1++;

Here, c1 is incremented to 3, but c2 is assigned the value of c1 before it

is incremented, so c2 retains the value 2. Of course, you can use this

same approach with the decrement operator (--).

