
 Lecture 7 Inheritance lecturer Khalida Ali Ahmed

 1

7.5 Overriding Member Functions
You can use member functions in a derived class that override—that is, have the same name as—

those in the base class. You might want to do this so that calls in your program work the same way for

objects of both base and derived classes. The program modeled a stack, a simple data storage device. It

allowed you to push integers onto the stack and pop them off. However, STAKARAY had a potential flaw. If

you tried to push too many items onto the stack, the program might bomb, since data would be placed in

memory beyond the end of the st[] array. Or if you tried to pop too many items, the results would be

meaningless, since you would be reading data from memory locations outside the array. To cure these

defects we‘ve created a new class, Stack2, derived from Stack. Objects of Stack2 behave in exactly the same

way as those of Stack, except that you will be warned if you attempt to push too many items on the stack or if

you try to pop an item from an empty stack. Here‘s the listing for STAKEN:

// staken.cpp

#include <iostream.h>

#include <process.h> //for exit()

class Stack

{

protected: //NOTE: can‘t be private

enum { MAX = 3 }; //size of stack array

int st[MAX]; //stack: array of integers

int top; //index to top of stack

public:

Stack() //constructor

{ top = -1; }

void push(int var) //put number on stack

{ st[++top] = var; }

int pop() //take number off stack

{ return st[top--]; }

};

class Stack2 : public Stack

{

public:

void push(int var) //put number on stack

{

if(top >= MAX-1) //error if stack full

{ cout << ―\nError: stack is full‖; exit(1); }

Stack::push(var); //call push() in Stack class

}

int pop() //take number off stack

{

if(top < 0) //error if stack empty

{ cout << ―\nError: stack is empty\n‖; exit(1); }

return Stack::pop(); //call pop() in Stack class

}

};

int main()

{

Stack2 s1;

s1.push(11); //push some values onto stack

 Lecture 7 Inheritance lecturer Khalida Ali Ahmed

 2

s1.push(22);

s1.push(33);

cout << endl << s1.pop(); //pop some values from stack

cout << endl << s1.pop();

cout << endl << s1.pop();

cout << endl << s1.pop(); //oops, popped one too many...

cout << endl;

return 0;

}

In this program the Stack class is just the same as it was in the STAKARAY program, except that the data

members have been made protected.

7.6 Which Function Is Used?
The Stack2 class contains two functions, push() and pop(). These functions have the same names, and

the same argument and return types, as the functions in Stack. When we call these functions from main(), in

statements like

s1.push(11);

how does the compiler know which of the two push() functions to use? Here‘s the rule: When the same

function exists in both the base class and the derived class, the function in the derived class will be executed.

(This is true of objects of the derived class. Objects of the base class don‘t know anything about the derived

class and will always use the base class functions.) We say that the derived class function overrides the base

class function. So in the preceding statement, since s1 is an object of class Stack2, the push() function in

Stack2 will be executed, not the one in Stack. The push() function in Stack2 checks to see whether the stack

is full. If it is, it displays an error message and causes the program to exit. If it isn‘t, it calls the push()

function in Stack. Similarly, the pop() function in Stack2 checks to see whether the stack is empty. If it is, it

prints an error message and exits; otherwise, it calls the pop() function in Stack. In main() we push three

items onto the stack, but we pop four. The last pop elicits an error message

33

22

11

Error: stack is empty

and terminates the program.

7.6.1 Scope Resolution with Overridden Functions
How do push() and pop() in Stack2 access push() and pop() in Stack? They use the scope resolution

operator, ::, in the statements

Stack::push(var);

and

return Stack::pop();

These statements specify that the push() and pop() functions in Stack are to be called. Without the scope

resolution operator, the compiler would think the push() and pop() functions in Stack2 were calling

themselves, which—in this case—would lead to program failure. Using the scope resolution operator allows

you to specify exactly what class the function is a member of.

7.7 Inheritance in the English Distance Class

 Lecture 7 Inheritance lecturer Khalida Ali Ahmed

 3

Here‘s a somewhat more complex example of inheritance. So far in this book the various programs

that used the English Distance class assumed that the distances to be represented would always be positive.

This is usually the case in architectural drawings. However, if we were measuring, say, the water level of the

Pacific Ocean as the tides varied, we might want to be able to represent negative feet-and-inches quantities.

(Tide levels below mean-lower-low-water are called minus tides; they prompt clam diggers to take advantage

of the larger area of exposed beach.) Let‘s derive a new class from Distance. This class will add a single data

item to our feet-and inches measurements: a sign, which can be positive or negative. When we add the sign,

we‘ll also need to modify the member functions so they can work with signed distances. Here‘s the listing for

ENGLEN:

// englen.cpp

// inheritance using English Distances

#include <iostream.h>

enum posneg { pos, neg }; //for sign in DistSign

class Distance //English Distance class

{

protected: //NOTE: can‘t be private

int feet;

float inches;

public: //no-arg constructor

Distance() : feet(0), inches(0.0)

{ } //2-arg constructor)

Distance(int ft, float in) : feet(ft), inches(in)

{ }

void getdist() //get length from user

{

cout << ―\nEnter feet: ―; cin >> feet;

cout << ―Enter inches: ―; cin >> inches;

}

void showdist() const //display distance

{ cout << feet << ―\‘-‖ << inches << ‗\‖‘; }

};

class DistSign : public Distance //adds sign to Distance

{

private:

posneg sign; //sign is pos or neg

public:

//no-arg constructor

DistSign() : Distance() //call base constructor

{ sign = pos; } //set the sign to +

//2- or 3-arg constructor

DistSign(int ft, float in, posneg sg=pos) :

Distance(ft, in) //call base constructor

{ sign = sg; } //set the sign

void getdist() //get length from user

{

Distance::getdist(); //call base getdist()

char ch; //get sign from user

 Lecture 7 Inheritance lecturer Khalida Ali Ahmed

 4

cout << ―Enter sign (+ or -): ―; cin >> ch;

sign = (ch==‘+‘) ? pos : neg;

}

void showdist() const //display distance

{

cout << ((sign==pos) ? ―(+)‖ : ―(-)‖); //show sign

Distance::showdist(); //ft and in

}

};

int main()

{

DistSign alpha; //no-arg constructor

alpha.getdist(); //get alpha from user

DistSign beta(11, 6.25); //2-arg constructor

DistSign gamma(100, 5.5, neg); //3-arg constructor

//display all distances

cout << ―\nalpha = ―; alpha.showdist();

cout << ―\nbeta = ―; beta.showdist();

cout << ―\ngamma = ―; gamma.showdist();

cout << endl;

return 0;

}

Here the DistSign class adds the functionality to deal with signed numbers. The Distance class in this

program is just the same as in previous programs, except that the data is protected. Actually in this case it

could be private, because none of the derived-class functions accesses it. However, it‘s safer to make it

protected so that a derived-class function could access it if

necessary.

7.7.1 Operation of ENGLEN
The main() program declares three different signed distances. It gets a value for alpha from the user

and initializes beta to (+)11'–6.25'' and gamma to (–)100'–5.5''. In the output we use parentheses around the

sign to avoid confusion with the hyphen separating feet and inches. Here‘s

some sample output:

Enter feet: 6

Enter inches: 2.5

Enter sign (+ or -): -

alpha = (-)6‘-2.5‖

beta = (+)11‘-6.25‖

gamma = (-)100‘-5.5‖

The DistSign class is derived from Distance. It adds a single variable, sign, which is of type posneg. The sign

variable will hold the sign of the distance. The posneg type is defined in an enum statement to have two

possible values: pos and neg.

7.7.2 Constructors in DistSign
DistSign has two constructors, mirroring those in Distance. The first takes no arguments, the second

takes either two or three arguments. The third, optional, argument in the second constructor is a sign, either

pos or neg. Its default value is pos. These constructors allow us to define variables (objects) of type DistSign

in several ways. Both constructors in DistSign call the corresponding constructors in Distance to set the

 Lecture 7 Inheritance lecturer Khalida Ali Ahmed

 5

feetand- inches values. They then set the sign variable. The no-argument constructor always sets it to pos.

The second constructor sets it to pos if no third-argument value has been provided, or to a value (pos or neg)

if the argument is specified. The arguments ft and in, passed from main() to the second constructor in

DistSign, are simply forwarded to the constructor in Distance.

7.7.3 Member Functions in DistSign
Adding a sign to Distance has consequences for both of its member functions. The getdist() function in

the DistSign class must ask the user for the sign as well as for feet-and-inches values, and the showdist()

function must display the sign along with the feet and inches. These functions call the corresponding

functions in Distance, in the lines

Distance::getdist();

and

Distance::showdist();

These calls get and display the feet and inches values. The body of getdist() and showdist() in DistSign then

go on to deal with the sign.

Exercises
1. Imagine a publishing company that markets both book and audiocassette versions of its works. Create a

class publication that stores the title (a int) and price (type float) of a publication. From this class derive two

classes: book, which adds a page count (type int), and tape, which adds a playing time in minutes (type float).

Each of these three classes should have a getdata() function to get its data from the user at the keyboard,

and a putdata() function to display its data. Write a main() program to test the book and tape classes by

creating instances of them, asking the user to fill in data with getdata(), and then displaying the data with

putdata().

2. Start with the publication, book, and tape classes of Exercise 1. Add a base class sales that holds an array

of three floats so that it can record the dollar sales of a particular publication for the last three months.

Include a getdata() function to get three sales amounts from the user, and a putdata() function to display the

sales figures. Alter the book and tape classes so they are derived from both publication and sales. An object

of class book or tape should input and output sales data along with its other data. Write a main() function to

create a book object and a tape object and exercise their input/output capabilities.

Solutions to Exercises

1.

// ex1.cpp

// publication class and derived classes

#include <iostream.h>

#include <string.h>

class publication // base class

{

private:

int title;

float price;

public:

 Lecture 7 Inheritance lecturer Khalida Ali Ahmed

 6

void getdata()

{

cout << ―\nEnter title: ―; cin >> title;

cout << ―Enter price: ―; cin >> price;

}

void putdata() const

{

cout << ―\nTitle: ― << title;

cout << ―\nPrice: ― << price;

}

};

//

class book : private publication // derived class

{

private:

int pages;

public:

void getdata()

{

publication::getdata();

cout << ―Enter number of pages: ―; cin >> pages;

}

void putdata() const

{

publication::putdata();

cout << ―\nPages: ― << pages;

}

};

//

class tape : private publication // derived class

{

private:

float time;

public:

void getdata()

{

publication::getdata();

cout << ―Enter playing time: ―; cin >> time;

}

void putdata() const

{

publication::putdata();

cout << ―\nPlaying time: ― << time;

}

};

//

int main()

{

book book1; // define publications

tape tape1;

 Lecture 7 Inheritance lecturer Khalida Ali Ahmed

 7

book1.getdata(); // get data for them

tape1.getdata();

book1.putdata(); // display their data

tape1.putdata();

cout << endl;

return 0;

}

2.

// ex2.cpp

// multiple inheritance with publication class

#include <iostream.h>

#include <string.h>

//

class publication

{

private:

int title;

float price;

public:

void getdata()

{

cout << ―\nEnter title: ―; cin >> title;

cout << ― Enter price: ―; cin >> price;

}

void putdata() const

{

cout << ―\nTitle: ― << title;

cout << ―\n Price: ― << price;

}

};

//

class sales

{

private:

enum { MONTHS = 3 };

float salesArr[MONTHS];

public:

void getdata();

void putdata() const;

};

//--

void sales::getdata()

{

cout << ― Enter sales for 3 months\n‖;

for(int j=0; j<MONTHS; j++)

{

cout << ― Month ― << j+1 << ―: ―;

cin >> salesArr[j];

}

 Lecture 7 Inheritance lecturer Khalida Ali Ahmed

 8

}

//--

void sales::putdata() const

{

for(int j=0; j<MONTHS; j++)

{

cout << ―\n Sales for month ― << j+1 << ―: ―;

cout << salesArr[j];

}

}

//

class book : private publication, private sales

{

private:

int pages;

public:

void getdata()

{

publication::getdata();

cout << ― Enter number of pages: ―; cin >> pages;

sales::getdata();

}

void putdata() const

{

publication::putdata();

cout << ―\n Pages: ― << pages;

sales::putdata();

}

};

//

class tape : private publication, private sales

{

private:

float time;

public:

void getdata()

{

publication::getdata();

cout << ― Enter playing time: ―; cin >> time;

sales::getdata();

}

void putdata() const

{

publication::putdata();

cout << ―\n Playing time: ― << time;

sales::putdata();

}

};

//

int main()

 Lecture 7 Inheritance lecturer Khalida Ali Ahmed

 9

{

book book1; // define publications

tape tape1;

book1.getdata(); // get data for publications

tape1.getdata();

book1.putdata(); // display data for publications

tape1.putdata();

cout << endl;

return 0;

}

