
Lecturer: khalidah ali ahmed web designs CH 7- The msqli extension

Lecturer: Zainab Khyioon Abd alrdha

1

The msqli extension

The mysqli extension features a dual interface. It supports the procedural and

object-oriented programming paradigm.

Users migrating from the old mysql extension may prefer the procedural interface.

The procedural interface is similar to that of the old mysql extension. In many

cases, the function names differ only by prefix. Some mysqli functions take a

connection handle as their first argument, whereas matching functions in the old

mysql interface take it as an optional last argument.

Mixing styles

It is possible to switch between styles at any time. Mixing both styles is not

recommended for code clarity and coding style reasons.

What is an Extension?

The PHP code consists of a core, with optional extensions to the core functionality.

PHP's MySQL-related extensions, such as the mysqli extension, and

the mysql extension, are implemented using the PHP extension framework.

An extension typically exposes an API to the PHP programmer, to allow its

facilities to be used programmatically. However, some extensions which use the

PHP extension framework do not expose an API to the PHP programmer.

The terms API and extension should not be taken to mean the same thing, as an

extension may not necessarily expose an API to the programmer.

What are the main PHP API offerings for using MySQL?

There are three main API options when considering connecting to a MySQL

database server:

o PHP's MySQL Extension

o PHP's mysqli Extension

o PHP Data Objects (PDO)

Each has its own advantages and disadvantages.

Lecturer: khalidah ali ahmed web designs CH 7- The msqli extension

Lecturer: Zainab Khyioon Abd alrdha

2

What is PHP's MySQL Extension?

This is the original extension designed to allow you to develop PHP applications

that interact with a MySQL database. The mysql extension provides a procedural

interface and is intended for use only with MySQL versions older than 4.1.3. This

extension can be used with versions of MySQL 4.1.3 or newer, but not all of the

latest MySQL server features will be available.

Note:

If you are using MySQL versions 4.1.3 or later it

is strongly recommended that you use the mysqli extension instead.

The mysql extension source code is located in the PHP extension directory
 ext/mysql.

What is PHP's mysqli Extension?

The mysqli extension, or as it is sometimes known, the

MySQL improved extension, was developed to take advantage of new features

found in MySQL systems versions 4.1.3 and newer. The mysqli extension is

included with PHP versions 5 and later.

The mysqli extension has a number of benefits, the key enhancements over

the mysql extension being:

o Object-oriented interface

o Support for Prepared Statements

o Support for Multiple Statements

o Support for Transactions

o Enhanced debugging capabilities

o Embedded server support

Note:

If you are using MySQL versions 4.1.3 or later it

is strongly recommended that you use this extension.

As well as the object-oriented interface the extension also provides a procedural

interface.

Lecturer: khalidah ali ahmed web designs CH 7- The msqli extension

Lecturer: Zainab Khyioon Abd alrdha

3

The mysqli extension is built using the PHP extension framework, its source code is
located in the directory ext/mysqli

What is PDO?

PHP Data Objects, or PDO, is a database abstraction layer specifically for PHP

applications. PDO provides a consistent API for your PHP application regardless of

the type of database server your application will connect to. In theory, if you are

using the PDO API, you could switch the database server you used, from say

Firebird to MySQL, and only need to make minor changes to your PHP code.

Other examples of database abstraction layers include JDBC for Java applications

and DBI for Perl.

While PDO has its advantages, such as a clean, simple, portable API, its main

disadvantage is that it doesn't allow you to use all of the advanced features that

are available in the latest versions of MySQL server. For example, PDO does not

allow you to use MySQL's support for Multiple Statements.

PDO is implemented using the PHP extension framework, its source code is
located in the directory ext/pdo.

Comparison of Features

The following table compares the functionality of the three main methods of

connecting to MySQL from PHP:

Comparison of MySQL API options for PHP

PHP's mysqli

Extension

PDO (Using PDO MySQL Driver

and MySQL Native Driver)

PHP's MySQL

Extension

PHP version introduced 5.0 5.0 Prior to 3.0

Included with PHP 5.x yes yes Yes

MySQL development

status

Active

development

Active development as of PHP

5.3

Maintenance

only

Recommended by Yes - Yes No

Lecturer: khalidah ali ahmed web designs CH 7- The msqli extension

Lecturer: Zainab Khyioon Abd alrdha

4

Comparison of MySQL API options for PHP

PHP's mysqli

Extension

PDO (Using PDO MySQL Driver

and MySQL Native Driver)

PHP's MySQL

Extension

MySQL for new projects preferred

option

API supports Charsets Yes Yes No

API supports server-side

Prepared Statements

Yes Yes No

API supports client-side

Prepared Statements

No Yes No

API supports Stored

Procedures

Yes Yes No

API supports Multiple

Statements

Yes Most No

Supports all MySQL 4.1+

functionality

Yes Most No

Using MySQLi with PHP with an OO approach

Introduction

MySQLi is the new interface incorporated within PHP language, where I stands for
improved. The improved version of the interface can be used with versions from
MySQL 4.1 on and up. It is possible to follow both the object oriented and the
procedural approach.

Connect to DB

To connect to a MySQL server, the following syntax is to be used:

Lecturer: khalidah ali ahmed web designs CH 7- The msqli extension

Lecturer: Zainab Khyioon Abd alrdha

5

<?php

$host = 'localhost';
$user = 'yourusername';
$pass = 'yourpassword';
$dbname = 'databasename';

// OOP way
 $db = new mysqli($host, $user, $pass, $dbname);
// Procedural way would be:
 $db = mysqli_connect($host, $user, $pass, $dbname);

?>

It is possible to use an error suppressor (the @ symbol) before your instructions.
This error suppressor should only be used when you are able to catch an error on
your own, and display an error message to the user. This suppressor has a warning
in PHP.net:

Reference:

http://www.php.net/manual/en/language.operators.errorcontrol.php

Currently the “@” error-control operator prefix will even disable error reporting
for critical errors that will terminate script execution. Among other things, this
means that if you use “@” to suppress errors from a certain function and either it
isn’t available or has been mistyped, the script will die right there with no
indication as to why.

Carrying on with our topic, as you can see, we have instantiated the mysqli class.
Since this instantiation returns an object, we can now invoke the methods of this
class. In turn, utilizing the procedural way, this returns a resource, thus
representing the database connection. This means that each time you will call a
mysqli function, this same resource is needed, which will indicate, what
connection you are referring to.

Displaying an error

Since we have suppressed the error in this case, we have a function that tells us if
the connection was successful or not. This function can be invoked the same way

Lecturer: khalidah ali ahmed web designs CH 7- The msqli extension

Lecturer: Zainab Khyioon Abd alrdha

6

for both procedural and object oriented way. In my opinion, it ‘looks’ like a
standalone function. To display an error to the user, we do it like this:

<?php
if(mysqli_connect_errno())
{
 die('The connection to the database could not be
established.');
}
?>

And that’s how simple it is to display an error to the user, and exit the process,
since our logic will not run correctly due to the missing database connection.

Changing databases

If at a certain point, you need to change the database, you can do so with the
following:

<?php
// OOP way
$db->select_db($new_dbname);
// Or the procedural way
// We send the paramater $db as the resourse
mysqli_select_db($db, $new_dbname);
?>

Running a query

Let’s create a query to retrieve all the users and their information to display it on
the screen. To do so, we would setup a string with our query, and send it to the
function like this:

<?php
// Set up query
$query = 'SELECT * FROM users';
// OOP way
$result = $db->query($query);
// Procedural way
$result = mysqli_query($db, $query);

Lecturer: khalidah ali ahmed web designs CH 7- The msqli extension

Lecturer: Zainab Khyioon Abd alrdha

7

?>

Remember that when using the OOP way, your returned result will be an object,
as to the procedural way, you will get another resource. If the above query is not
successful for any reason, our result will be a simple ‘FALSE’.

Get the results

Obviously, if we have just queried a database, it means that we need this data. If
you would like to know how many records this query has returned, then we can go
ahead and use the attribute num_rows. We achieve this with a simple line of code:

<?php
// OOP way
$total_results = $result->num_rows;
// Procedural way
$total_results = mysqli_num_rows($result);
?>

Now that we know how many results are, we can go ahead and loop through the
results, and display them on the screen. Let’s go ahead and use a while loop.
The fetch_assoc function will return an array for each record that was found, and
each will have each key as their attributes, and each value in the array.

<?php

echo 'There are $total_results record(s) found';
// OOP way
while ($row = $result->fetch_assoc())
{
 echo '<p>';
 echo $row['username'].' ';
 echo $row['firstname'].' ';
 echo $row['lastname'].' ';
 echo $row['city'].' ';
 echo $row['state'].'</p>';
}

// Procedural way

Lecturer: khalidah ali ahmed web designs CH 7- The msqli extension

Lecturer: Zainab Khyioon Abd alrdha

8

while ($row = mysqli_fetch_assoc($result))
{
 echo '<p>';
 echo $row['username'].' ';
 echo $row['firstname'].' ';
 echo $row['lastname'].' ';
 echo $row['city'].' ';
 echo $row['state'].'</p>';
}
?>

If you wanted to grab the results as an object, you could just use
the fetch_object function.

<?php
// OOP way
$row = $result->fecth_object();
// Procedural way
$row = mysqli_fetch_object($result);
// Attributes are accessed in the following:
$row->username;
$row->firstname; // Etc...
?>

Close connection

Although PHP automatically closes your connection upon script termination, if you
want to close the connection before your script is done, you can do so by just
invoking the close function. This is done by doing the following. First though, you
should ‘free’ up the result identifier, which will free up the memory. Then use the
close function, to close the connection.

<?php
// OOP way
$result->free();
$db->close();
// Procedural way
mysqli_free_result($result);
mysqli_close($db);

Lecturer: khalidah ali ahmed web designs CH 7- The msqli extension

Lecturer: Zainab Khyioon Abd alrdha

9

?>

