Chapter Two Addressing Data Memory

Chapter Two Addressing Data Memory

Addressing Data Memory

Depending on the model, the processor can access one or more bytes of memory
at a time. Consider the Hexa value (0529H) which requires two bytes or one

word of memory. It consist of high order (most significant) byte 05 and a low

order (least significant) byte 29.

The processor store the data in memory in reverse byte sequence i.e. the low
order byte in the low memory address and the high order byte in the high
memory address. For example, the processor transfer the value 0529H from a

register into memory address 04A26 H and 04A27H like this:

FFFFF
Register | 05 29)
04A28
Most Significant Bvte

1 05 04A27

Least Significant Byte 29 04A26

00000

Memory

The processor expects numeric data in memory to be in reverse byte
sequence and processes the data accordingly, again reverses the bytes, restoring
them to correctly in the register as hexa 0529H.
When programming in assembly language, you have to distinguish between the

address of a memory location and its contents. In the above example the content

of address 04A26H is 29, and the content of address 04A27H is 05.

Chapter Two Addressing Data Memory

There are two types of addressing schemes:

1. An_Absolute Address, such as 04A26H, is a 20 bit value that directly

references a specific location.

2. A Segment Offset Address, combines the starting address of a segment with

an offset value.

Segments and Addressing

Segments are special area defined in a program for containing the code, the

data, and the stack. Segment Offset within a program, all memory locations

within a segment are relative to the segment starting address. The distance in
bytes from the segment address to another location within the segment is

expressed as an offset (or displacement).

To reference any memory location in a segment, the processor combine the
segment address in a segment register with the offset value of that location, that

is, its distance in byte from the start of the segment.

Specifying addresses

To represent a segment address and its relative offset we use the notation:

Segment: offset

Thus 020A:1BCD denotes offset 1IBCDH from segment 020AH. The actual

address it refers to is obtained in the following way:
» Add zero to the right hand side of the segment address.

> Add to this the offset.

Chapter Two

Addressing Data Memory

Hence the actual address referred to by 020A:1BCD is 03C6D.

Memory= 1

FFFFF

MB

00000

FF

0000

Only 64 KB can be used by IP

since it is 16-bit register

Address Bus in the 8086 is 20 bits wide (20 lines) i.e. the processor can
access memory of size 220 or 1048576 bytes (1MB).

Instruction Pointer = 16 bit register which means the processor can only address

0 — 216 (65535) bytes of memory. But we need to write instructions in any of

the 1MB of memory. This can be solved by using memory segmentation., where

each segment register is 16-bit (this 16-bit is the high 16-bit of Address Bus

(A4- A19)) i.e. each of the segment registers represent the actual address after

shifting the address 4-bit to get 20 bits.

Registers

Registers are 8, 16, or 32-bit high speed storage locations directly inside the

CPU, designed to be accessed at much higher speed than conventional memory.

Chapter Two Addressing Data Memory

Coenmnceral Purpose Index Reg.

AN I AT I AL I I B I
B I EBE I BL | I s |
< I CE1 | P | I sx |
DX [> [DI I l D1 J

Status & Control Segment Roegs.
[Flz=ags] [« = I
T I
I DS |
[Es J

Figure 7: Intel 16-bit registers

The CPU has an internal data bus that is generally twice as wide as its external

data bus.

Data Registers: The general purpose registers, are used for arithmetic and data

movement. Each register can be addressed as either 16-bit or 8 bit value.
Example, AX register is a 16-bit register, its upper 8-bit is called AH, and its
lower 8-bit is called AL. Bit 0 in AL corresponds to bit 0 in AX and bit 0 in AH
corresponds to bit 8 in AX. See Figure 8.

AX AH AL

-+
7

R

-
0

A

Figure 8: AX register

Chapter Two Addressing Data Memory

Instructions can address either 16-bit data register as AX, BX, CX, and DX or
8-bit register as AL, AH, BL, BH, CL, CH, DI, and DH. If we move 126FH to

AX then AL would immediately 6FH and AH = 12H.

General Purpose Register

Each general purpose register has special attributes:

0 AX (Accumulator): AX is the accumulator register because it is favored

by the CPU for arithmetic operations. Other operations are also slightly

more efficient when performed using AX.

0 BX (Base): the BX register can hold the address of a procedure or variable.
Three other registers with this ability are SI, DI and BP. The BX register

can also perform arithmetic and data movement.

0 CX (Counter): the CX register acts as a counter for repeating or looping

instructions. These instructions automatically repeat and decrement CX

0 DX (Data): the DX register has a special role in multiply and divide

operation. When multiplying for example DX hold the high 16 bit of the

product.

Segment Registers

Segment Registers: the CPU contain four segment registers, used as base

location for program instruction, and for the stack.

¢ CS (Code Segment): The code segment register holds the base location of

all executable instructions (code) in a program.

Chapter Two Addressing Data Memory

« DS (Data Segment): the data segment register is the default base location

for variables. The CPU calculates their location using the segment value in

DS.

/7

s SS (Stack Segment): the stack segment register contain the base location

of the stack.

/7

< ES (Extra Segment): The extra segment register is an additional base

location for memory variables.

Index Registers

Index registers contain the offset of data and instructions. The term offset

refers to the distance of a variable, label, or instruction from its base segment.

The index registers are:

v' BP_(Base Pointer): the BP register contain an assumed offset from the

stack segment register, as does the stack pointer. The base pointer register is
often used by a subroutine to locate variables that were passed on the stack

by a calling program.

v" SP (Stack Pointer): the stack pointer register contain the offset of the top of

the stack. The stack pointer and the stack segment register combine to form

the complete address of the top of the stack.

v" SI (Source Index): This register takes its name from the string movement

instruction, in which the source string is pointed to by the source index

register.

v DI _(Destination Index): the DI register acts as the destination for string

movement instruction

