Chapter Two Addressing Data Memory

« DS (Data Segment): the data segment register is the default base location

for variables. The CPU calculates their location using the segment value in

DS.

/7

s SS (Stack Segment): the stack segment register contain the base location

of the stack.

/7

< ES (Extra Segment): The extra segment register is an additional base

location for memory variables.

Index Registers

Index registers contain the offset of data and instructions. The term offset

refers to the distance of a variable, label, or instruction from its base segment.

The index registers are:

v' BP_(Base Pointer): the BP register contain an assumed offset from the

stack segment register, as does the stack pointer. The base pointer register is
often used by a subroutine to locate variables that were passed on the stack

by a calling program.

v" SP (Stack Pointer): the stack pointer register contain the offset of the top of

the stack. The stack pointer and the stack segment register combine to form

the complete address of the top of the stack.

v" SI (Source Index): This register takes its name from the string movement

instruction, in which the source string is pointed to by the source index

register.

v DI _(Destination Index): the DI register acts as the destination for string

movement instruction

Chapter Two

Addressing Data Memory

Status and Control Register

1. IP_(Instruction Pointer): The instruction pointer register always contain

the offset of the next instruction to be executed within the current code

segment. The instruction pointer and the code segment register combine to

form the complete address of the next instruction.

2. The Flag Register: is a special register with individual bit positions

assigned to show the status of the CPU or the result of arithmetic operations.

The Figure9 describe the 8086/8088 flags register:

1S 14 13 312 11 10 9 8 7 6 S5 4 3 2 1 ©
XXX X]|OID || T|S |Z]|X]A|X|P X|C
O= Over Flow S= sign
D= Direction Z=7ero
I= Interrupt A= Auxiliary
T= trap P= parity
X= Undefined C= carry

Figure 9: Flag Register

There Two Basic Types of Flags

There two basic types of flags: (control flags and status flags)

1. Control Flags: individual bits can be set in the flag register by the

programmer to control the CPU operation , these are

*= The Direction Flag (DF): affects block data transfer instructions, such as

MOVS, CMPS, SCAS. The flag values are 0 = up and 1 = down.

Chapter Two Addressing Data Memory

The Interrupt flag (IF): dictates whether or not a system interrupt can

occur. Such as keyboard, disk drive, and the system clock timer. A
program will sometimes briefly disable the interrupt when performing a
critical operation that cannot be interrupted. The flag values are 1 _=

enable, 0 = disable.

The Trap flag (TF): Determine whether or not the CPU is halted after

each instruction. When this is set, a debugging program can let a
programmer to enter single stepping (trace) through a program one

instruction at a time. The flag values are 1 = on, 0 = off. The flag can be

set by INT 3 instruction.

2. Status Flags: The status flags reflect the outcomes of arithmetic and logical

operations performed by the CPU, these are:

The Carry Flag (CF): is set when the result of an unsigned arithmetic

operation is too large to fit into the destination for example, if the sum of
71 and 99 where stored in the 8-bit register AL, the result cause the carry

flag to be 1. The flag values =1 = carry, 0 = no carry.

The Overflow (OF): is set when the result of a signed arithmetic operation

is too wide (too many bits) to fit into destination. 1 = overflow, 0 = no

overflow.

Sign Flag (SF): is set when the result of an arithmetic of logical operation

generates a negative result, 1= negative, 0 = positive.

Zero Flag (ZF): is set when the result of an arithmetic of logical operation

generates a result of zero, the flag is used primarily by jump or loop
instructions to allow branching to a new location in a program based on the

comparison of two values. The flag value = 1 = zero, & 0 = not zero.

Chapter Two Addressing Data Memory

= Auxiliary Flag: is set when an operation causes a carry from bit 3 to bit 4

(or borrow from bit 4 to bit 3) of an operand. The flag value = 1 = carry, 0

= no carry.
= Parity Flag: reflect the number of 1 bits in the result of an operation. If

there is an even number of bit, the parity is even. If there is an odd

number of bits, parity is odd. This flag is used by the OS to verify
memory integrity and by communication software to verify the correct

transmission of data.

Instruction Execution and Addressing

An assembly language programmer writhe a program in symbolic code and
uses the assembler to translate it into machine code as .EXE program. For

program execution, the system looks only the machine code into memory.

Every instruction consists of at least one operation, such as MOV, ADD.
Depending on the operation, an instruction may also have one or more

operands that reference the data the operation is to process.

The Basic Steps the Processor

The basic steps the processor takes in executing on instruction are:

1. Fetch the next instruction to be executed from memory and place it in the

instruction queue.

2. Decode the instruction calculates addressed that reference memory, deliver
data to the Arithmetic Logic Unit, and increment the instruction pointer (IP)

register.

Chapter Two Addressing Data Memory

3. Execute the instruction, performs the request operation, store the result in

a register or memory, and set flags such as zero or carry where required.

For an .EXE program the CS register provide the address of the beginning
of a program code segment, and DS provide the address of the beginning of the

data segment.

The CS contains instructions that are to be executed, where as the DS
contain data that the instruction reference. The IP register indicates the offset
address of the current instruction in the CS that is to be executed. An instruction

operand indicates on offset address in the DS to be referenced.

Consider and example in which the program loader has determined that it is
to be load on .EXE program into memory beginning at location 0SBEOH. The
loader accordingly initialize CS with segment address 0SBE[0]H and IP with

ZCr1o.

CS: IP together determine the address of the first instruction to execute

0SBEOH + 0000H = 0SBEOH. In this way the first instruction in CS being

execution, if the first instruction is two byte long, the processor increment IP by

2, so that , the next instruction to be executed is 0SBEOH + 0002H = 0SBE2H.

Assume the program continues executing, and IP contain the offset

0023H. CS: IP now determine the address of the next instruction to execute, as

follows:

CS address: 05SBEOH

IP offset: 0023H +

Instruction address: 05C03H

Chapter Two Addressing Data Memory

EX: let's say that MOV instruction beginning at 0FCO3H copies the content of
a byte in memory into the AL register. The byte is at offset 0016H in the DS.

Her are the machine code and the symbolic code for this operation.

Address Symbolic Code MIC code
0FCO03 MOV AL, [0016] A0 1600
Address OFCO3H contain the first byte (AOH) of the MIC code instruction

the processor is to access

QOO0 ,,

0 OSC 003,
00 OSC O,
16 OSC O05;,
FEFEFEFEFE

The second and third byte contains the offset value in reversed byte
sequence. In symbolic code, the operand [0016] in square brackets (an index
operator) indicates an offset value to distinguish it from the actual storage
address 16. Lest say that the program has initialized the DS register with DS
address 0SD1J0]JH. To access the data item, the processor determines its
location from the segment address in DS + the offset (0016H) in the instruction.
Operand become DS contain QFD1J0]H, the actual location of the reference

data item 1s

AR

Chapter Two Addressing Data Memory

DS: 05D10H
Offset: 0016H +
Address of data item: 05D26H

Assume the address 0SD26H contain 4AH, the processor now extract the

4AH at address 05SD26H and copy it into AL register.

An instruction may also access more than one byte at a time

EX: Suppose an instruction is to store the content of the AX register (0248H) in

two adjacent byte in the DS beginning at offset 0016H.

The symbolic code MOV [0016], AX

The processor stores the two byte in memory in revered byte sequence as
Content of AX: 02 48

Offset in DS: 0017 0016

Another instruction, MOV_AX, [0016], subsequently could retrieve these

byte by copy them from memory back into AX.

The operation reverses (and corrects) the byte in AX as: 02 T I

48
Number of Operands

Operands specify the value an instruction is to operate on, and where the result
is to be stored. Instruction sets are classified by the number of operands used.

An instruction may have no, one, two, or three operands.

\Y

