

C++ Programming Basics

In any language there are some fundamentals you need to know before you can write even the

most elementary programs. This chapter introduces three such fundamentals: basic program

construction, variables, and input/output (I/O). It also touches on a variety of other language

features, including comments, arithmetic operators, the increment operator, data conversion,

and library functions.

These topics are not conceptually difficult, but you may find that the style in C++ is a little

austere compared with, say, BAS -

while other languages begin to seem unnecessarily fancy and verbose.

As we noted in the Introduction, you can use either a Microsoft or a Borland compiler with

this book. Appendixes C and D provide details about their operation. (Other compilers may

work as well.) Compilers take source code and transform it into executable files, which your

computer can run as it does other programs. Source files are text files (extension .CPP) that cor-

respond with the listings printed in this book. Executable files have the .EXE extension, and can

be executed either from within your compiler, or, -DOS, directly

from a DOS window.

The programs run without modification on the Microsoft compiler or in an MS-DOS window.

-

FIRST, so its source file is

FIRST.CPP. It simply prints a sentence on the screen. Here it is:

Despite its small size, this program demonstrates a great deal about the construction of C++

Chapter

Functions are one of the fundamental building blocks of C++. The FIRST program consists

almost entirely of a single function called . The only parts of this program that are not

part of the function are the first two lines the ones that start with and

see what these lines do in a moment.)

it is called a member function. However, functions can also exist independently of classes. We

are not yet ready to talk about classes, so we will show functions that are separate standalone

entities, as is here.

The parentheses following the word are the distinguishing feature of a function. Without

the parentheses the compiler would think that refers to a variable or to some other pro-

arguments: values passed from

the calling program to the function.

The word preceding the function name indicates that this particular function has a return

value of type data types later in this chapter

The body of a function is surrounded by braces (sometimes called curly brackets). These

braces play the same role as the and keywords in some other languages: They sur-

round or delimit a block of program statements. Every function must use this pair of braces

around the function body. In this example there are only two statements in the function body:

the line starting with , and the line starting with . However, a function body can

consist of many statements.

When you run a C++ program, the first statement executed will be at the beginning of a func-

tion called mode programs in this book.) The pro-

gram may consist of many functions, classes, and other program elements, but on startup,

control always goes to . If there is no function called in your program, an error

will be reported when you run the program.

calls member functions in various objects to

function may also contain calls to other stand-

C++ Programming Basics

Objects, functions, and .

The program statement is the fundamental unit of C++ programming. There are two statements

in the FIRST program: the line

and the return statement

The first statement tells the computer to display the quoted phrase. Most statements tell the

computer to do something. In this respect, statements in C++ are similar to statements in other

 in C++ are identical to statements

in C.

A semicolon signals the end of the statement. This is a crucial part of the syntax but easy to

forget. In some languages (like BASIC), the end of a statement is signaled by the end of the

(although not always) signal an error.

Chapter

The last statement in the function body is . This tells

whoever called it, in this case the operating system or compiler. In older versions of C++ you

could give the return type of and dispense with the return statement, but this is

ignores whitespace almost completely. Whitespace is defined as spaces, carriage returns, line-

feeds, tabs, vertical tabs, and formfeeds. These characters are invisible to the compiler. You can
put several statements on one line, separated by any number of spaces or tabs, or you can run a

FIRST program

could be written this way:

but it does compile cor-

rectly.

There are several exceptions to the rule that whitespace is invisible to the compiler. The first

line of the program, starting with , is a preprocessor directive, which must be written

on one line. Also, string constants, such as , can-

not be broken into separate lines. (If you need a long string constant, you can insert a back-

slash (\) at the line break or divide the string into two separate strings, each surrounded by

quotes.)

As you have seen, the statement

causes the phrase in quotation marks to be displayed on the screen. How does this work? A

complete description of this statement requires an understanding of objects, operator overload-

 brief preview.

C++ Programming Basics

The identifier object. It is predefined in C++ to corre-

spond to the standard output stream. A stream is an abstraction that refers to a flow of data.

The standard output stream normally flows to the screen display although it can be redirected

The operator is called the insertion or put to operator. It directs the contents of the variable

on its right to the object on its left. In FIRST it directs the string constant

to , which sends it to the display.

as the left-shift bit-wise operator and wonder how it can

also be used to direct output. In C++, operators can be overloaded. That is, they can perform

Although the concepts behind the use of and may be obscure at this point, using them

and the insertion operator .

Output with .

The phrase in quotation marks, , is an example

of a string constant. As you probably know, a constant, unlike a variable, cannot be given a

new value as the program runs. Its value is set when the program is written, and it retains this

handling strings are commonly used. A string can be represented by an array of characters, or

Chapter

The character at the end of the string constant is an example of an escape sequence. It

causes the next text output to be displayed on a new line. We use it here so that the phrases

ter in this chapter.

The two lines that begin the FIRST program are directives. The first is a preprocessor directive,

and the second is a directive

 necessary anyway

The first line of the FIRST program

might look like a program statement, but

end with a semicolon, as program statements must. Instead, it starts with a number sign ().

called a preprocessor directive. Recall that program statements are instructions to the com-

puter to do something, such as adding two numbers or printing a sentence. A preprocessor

directive, on the other hand, is an instruction to the compiler. A part of the compiler called the

preprocessor deals with these directives before it begins the real compilation process.

The preprocessor directive tells the compiler to insert another file into your source

file. In effect, the directive is replaced by the contents of the file indicated. Using an

directive to insert another file into your source file is similar to pasting a block of

text into a document with your word processor.

is only one of many preprocessor directives, all of which can be identified by the ini-

tial

look at a few additional examples as we go along. The type file usually included by

is called a header file.

In the FIRST example, the preprocessor directive tells the compiler to add the source

file IOSTREAM to the FIRST.CPP source file before compiling. Why do this? IOSTREAM is an exam-

ple of a header file (sometimes called an include file). concerned with basic input/output

operations, and contains declarations that are needed by the identifier and the operator.

Without the and will think is being used

a file extension, but some older header files, left over from the days of the C language, have

the extension .H.

C++ Programming Basics

IOSTREAM, you can find the directory for your compiler

and display it as a source file in the Edit window. (See the appropriate appendix for hints on

how to do this.) Or you can look at it with the WordPad or Notepad utilities. The contents

IOSTREAM is a

source file, written in normal ASCII characters.

r files at the end of this chapter, when we introduce library

functions.

A C++ program can be divided into different namespaces. A namespace is a part of the pro-

gram in which certain names are recognized; outside of the namespace

directive

says that all the program statements that follow are within the namespace. Various program

components such as direc-

tive, we would need to add the name to many program elements. For example, in the FIRST

program need to say

To avoid adding dozens of times in programs we use the directive instead. ll

Comments are an important part of any program. They help the person writing a program, and

comments, so they do not add to the file size or execution time of the executable program.

FIRST

new program COMMENTS:

Chapter

Comments start with a double slash symbol () and terminate at the end of the line. (This is

one of the exceptions to the rule that the compiler ignores whitespace.) A comment can start at

the beginning of the line or on the same line following a program statement. Both possibilities

are shown in the COMMENTS example.

may need more explanation than you do about what your program is doing. Also, you may not

are today.

Use comments to explain to the person looking at the listing wha

details are in the program statements themselves, so the comments should concentrate on the

big picture, clarifying your reasons for using a certain statement or group of statements.

comment style available in C++:

This type of comment (the only comment originally available in C) begins with the charac-

ter pair and ends with (not with the end of the line). These symbols are harder to type (since

is lowercase while is uppercase) and take up more space on the line, so this style is not

generally used in C++. However, it has advantages in special situations. You can write a multi-

line comment with only two comment symbols:

This is a good approach to making a comment out of a large text passage, since it saves insert-

ing the symbol on every line.

