

Loops and Decisions

Not many programs execute all their statements in strict order from beginning to end. Most

programs (like many humans) decide what to do in response to changing circumstances. The

flow of control jumps from one part of the program to another, depending on calculations per-

formed in the program. Program statements that cause such jumps are called control

statements. There are two major categories: loops and decisions.

How many times a loop is executed, or whether a decision results in the execution of a section

of code, depends on whether certain expressions are true or false. These expressions typically

involve a kind of operator called a relational operator, which compares two values. Since the

them first.

A relational operator compares two values. The values can be any built-in C++ data type, such

as , , and , or they can be user-defined classes. The compar-

ison involves such relationships as equal to, less than, and greater than. The result of the com-

parison is true or false; for example, either two values are equal (true)

Our first program, RELAT, demonstrates relational operators in a comparison of integer vari-

ables and constants.

and a number entered by the

The first expression is true if is

 while a false expression has the

As we mentioned in the last chapter, Standard C++ includes a type , which can hold one

of two constant values, or . You might think that results of relational expressions

like would be of type , and that the program would print instead of and

instead of . In fact, C++ is rather schizophrenic on this point. Displaying the results of

relational operations, or even the values of type variables, with yields or , not

or . Historically this is because C++ started out with no type. Before the

advent of Standard C++, the only way to express false and true was with and . Now false

can be represented by either a value of , or by an integer value of ; and true can

be represented by either a value of or an integer value of .

display

true/false values; we just use them in loops and decisions to influence what the program will

do next.

 relational operators:

Operator Meaning

Greater than (greater than)

Less than

Equal to

Not equal to

Greater than or equal to

Less than or equal to

each expression. The first two lines are assignment statements that set the values of the variables

and . You might want to hide the comments with your old Jose Canseco baseball

card and see whether you can predict which expressions evaluate to true and which to false.

Loops and Decisions

Note that the equal operator, , uses two equal signs. A common mistake is to use a single

equal sign the assignment operator as a relational operator. This is a nasty bug, since the

decisions.

Loops cause a section of your program to be repeated a certain number of times. The repetition

continues while a condition is true. When the condition becomes false, the loop ends and con-

trol passes to the statements following the loop.

There are three kinds of loops in C++: the loop, the loop, and the loop.

The loop is (for many people, anyway) the easiest C++ loop to understand. All its loop-

control elements are gathered in one place, while in the other loop constructions they are scat-

tered about the program, which can make it harder to unravel how these loops work.

The

always) used when you know, before entering the loop, how many times you want to execute

the code.

FORDEMO

How does this work? The statement controls the loop. It consists of the keyword , fol-

lowed by parentheses that contain three expressions separated by semicolons:

These three expressions are the initialization expression, the test expression, and the increment

expression

Syntax of the loop.

These three expressions usually (but not always) involve the same variable, which we call the

loop variable. In the FORDEMO example the loop variable is

within the loop body start to execute.

The body of the loop is the code to be executed each time through the loop. Repeating this

 loop body consists of a single state-

ment:

Loops and Decisions

This statement prints out the square of , followed by two spaces. The square is found by mul-

tiplying by itself. As the loop executes,

Note that the statement

and the loop body are together considered to be a program statement. This is an important

detail. If you put a semicolon after the statement, the compiler will think there is no loop

statement control the loop.

The initialization expression is executed only once, when the loop first starts. It gives the loop

variable an initial value. In the FORDEMO example it sets

The test expression usually involves a relational operator. It is evaluated each time through the

loop, just before the body of the loop is executed. It determines whether the loop will be exe-

 the

loop ends, and control passes to the statements following the loop. In the FORDEMO example the

statement

is executed following the completion of the loop.

The increment expression changes the value of the loop variable, often by incrementing it. It is

always executed at the end of the loop, after the loop body has been executed. Here the incre-

ment operator each time through the loop. Figure

The loop in the FORDEMO

ensured in the initialization expression. The last time through the loop, -

mined by the test expression . When

not executed when has this value. The arrangement shown is commonly used to do some-

-than operator and a

value equal to the desired number of iterations, and increment the loop variable after each iter-

ation.

Operation of the loop.

loop example:

going

Of course you may want to execute more than one statement in the loop body. Multiple state-

ments are delimited by braces, just as functions are. Note that there is no semicolon following

the final brace of the loop body, although there are semicolons following the individual state-

ments in the loop body.

The next example, CUBELIST, uses three statements in the loop body. It prints out the cubes of

-column format.

Loops and Decisions

-

, the less-than-or-equal-to operator. The effect is that the loop body is

We should note that you can also put braces around the single statement loop body shown pre-

ers feel it improves clarity to use them

whether the loop body consists of a single statement or not.

The loop body, which consists of braces delimiting several statements, is called a block of

code. One important aspect of a block is that a variable defined inside the block is not visible

outside it. Visible -

CUBELIST we define the variable

inside the block, in the statement

placed the statement

after the loop body, the compiler would signal an error because the variable would be

undefined outside the loop.

One advantage of restricting the visibility of variables is that the same variable name can be

used within different blocks in the same program. (Defining variables inside a block, as we did

in CUBELIST, is common in C++ but is not popular in C.)

Good programming style dictates that the loop body be indented that is, shifted right, relative

to the loop statement (and to the rest of the program). In the FORDEMO example one line is

indented, and in CUBELIST the entire block, including the braces, is indented. This indentation is

an important visual aid to the programmer: It makes it easy to see where the loop body begins

it cares).

There is a common variation on the style we use for loops in this book. We show the braces

aligned vertically, but some programmers prefer to place the opening brace just after the loop

statement, like this:

This saves a line in the listing but makes it more difficult to read, since the opening brace is

harder to see and harder to match with the corresponding closing brace. Another style is to

indent the body but not the braces:

This is a common approach, but at least for some people it makes it harder for the eye to con-

nect the braces to the loop body. However, you can get used to almost anything. Whatever style

you choose, use it consistently.

Loops and Decisions

You can use the debugging features built into your compiler to create a dramatic animated dis-

play of loop operation. The key feature is single-stepping. Your compiler makes this easy. Start

by opening a project for the program to be debugged, and a window containing the source file.

The exact instructions necessary to launch the debugger vary with different compilers, so con-

-

ate. By pressing a certain function key you can cause one line of your program to be executed

at a time. This will show you the sequence of statements executed as the program proceeds. In

start of the loop and the cycle will be repeated.

You can also use the debugger to watch what happens to the values of different variables as

you single- -

gram. You can experiment with this technique with the CUBELIST program by putting the

and variables in a Watch window in your debugger and seeing how they change as the

program proceeds. Again, consult the appropriate appendix for instructions on how to use

Watch windows.

Single-stepping and the Watch window are powerful debugging tools. If your

behave as you think it should, you can use these features to monitor the values of key variables

as you step through the program. Usually the source of the problem will become clear.

ed to increment the loop variable; it can perform any oper-

ation it likes. In the next example it decrements the loop variable. This program, FACTOR, asks

the user to type in a number, and then calculates the factorial of this number. (The factorial is

calculated by multiplying the original number by all the positive integers smaller than itself.

In this example the initialization expression sets to the value entered by the user. The test

expression causes the loop to execute as long as

decrements after each iteration.

 type for the factorial, since the factorials of even small numbers

-bit systems such as Windows is the same as , but gives

-bit systems. The following output shows how large factorials can be,

even for small input numbers:

inputs, but the results will be wrong, as the capacity of type will be exceeded.

is defined inside the state-

ment:

best approach to loop vari-

ables. It defines the variable as closely as possible to its point of use in the listing. Variables

defined in the loop statement this way are visible in the loop body only. (The Microsoft com-

piler makes them visible from the point of definition onward to the end of the file, but this is

not Standard C++.)

You can put more than one expression in the initialization part of the statement, separating

the different expressions by commas. You can also have more than one increment expression.

This example has a normal loop variable , but it also initializes another variable, , and

decrements a third, . The variables and

each other, or with . Multiple initialization expressions and multiple increment expressions

are separated by commas.

Loops and Decisions

Actually, you can leave out some or all of the expressions if you want to. The expression

is the same as a loop with a test expression of loops next.

these approaches can make the

-

alone statements or a different form of loop to achieve the same effect.

The

many times you want to do something before you start the loop? In this case a different kind of

loop may be used: the loop.

The next example, ENDON er a series of numbers. When the number

at which point the loop and the program terminate.

The loop looks like a simplified version of the loop. It contains a test expression but

no initialization or increment expressions. Fig loop.

Syntax of the loop.

As long as the test expression is true, the loop continues to be executed. In ENDON

expression

(

loop. The simplicity of the loop is a bit illu-

sory. Although there is no initialization expression, the loop variable (in ENDON t be

initialized before the loop begins. The loop body must also contain some statement that

changes the value of the loop variable; otherwise the loop would never end. In ENDON

.

The next example, WHILE ses multiple statements in a

CUBELIST program shown earlier with a loop, but it calculates the fourth power, instead of

results in a column four digits wide. To ensure that the results fit this column width, we must

know what number will generate a result of this size, so we let the program figure it out. The

Loops and Decisions

test expression in the statement terminates the program before the powers become too

large.

Operation of the loop.

To find the fourth power of , we simply multiply it by itself four times. Each time through

the loop we increment in the test expression in ; instead, the

resulting value of

The too wide for our four-digit column; but by this time the

loop has terminated.

The next program touches on the question of operator precedence. It generates the famous

sequence of numbers called the Fibonacci series. Here are the first few terms of the series:

so on. The Fibonacci series has applications in amazingly diverse fields, from sorting methods

in computer science to the number of spirals in sunflowers.

One of the most interesting aspects of the Fibonacci series is its relation to the golden ratio.

The golden ratio is supposed to be the ideal proportion in architecture and art, and was used in

the design of ancient Greek temples. As the Fibonacci series is carried out further and further,

the ratio of the last two terms approaches closer and closer to the golden ratio. the list-

ing for FIBO.CPP:

Loops and Decisions

For you temple builders, the ratio of the last two terms gives an approximation of the golden

ra close enough for government work.

The FIBO program uses type , the type that holds the largest positive integers.

The test expression in the statement terminates the loop before the numbers exceed the

limit of this type. We define this limit as a

when becomes larger than half the limit; otherwise, would exceed the limit.

The test expression uses two operators:

Our intention is to compare with the result of . That is, we want the division to

be performed before the comparison. We could put parentheses around the division, to ensure

rithmetic operators have a higher

precedence than relational operators. This guarantees that will be evaluated before the

later in this chapter, when we look at logical operators.

In a loop, the test expression is evaluated at the beginning of the loop. If the test expres-

-

tions this is what you want. But sometimes you want to guarantee that the loop body is

executed at least once, no matter what the initial state of the test expression. When this is the

case you should use the loop, which places the test expression at the end of the loop.

Our example, DIVDO, invites the user to enter two numbers: a dividend (the top number in a

division) and a divisor (the bottom number). It then calculates the quotient (the answer) and

the remainder, using the and operators, and prints out the result.

Most of this program resides within the loop. First, the keyword marks the beginning of

the loop. Then, as with the other loops, braces delimit the body of the loop. Finally, a

statement provides the test expression and terminates the loop. This statement looks

much like the one in a loop, except for its position at the end of the loop and the fact

that it ends with a semicolon (which is easy to forget!). The syntax of the loop is shown in

Loops and Decisions

Syntax of the loop.

Following each computation, DIVDO asks if the user wants to do another. If so, the user enters a

DIVDO

Operation of the loop.

loop is appropriate

when you know in advance how many times the loop will be executed. The and loops

loop when

you may not want to execute the loop body even once, and the

want to execute the loop body at least once).

These criteria are somewhat arbitrary. Which loop type to use is more a matter of style than of

hard-and-fast rules. You can actually make any of the loop types work in almost any situation.

You should choose the type that makes your program the clearest and easiest to follow.

The decisions in a loop always relate to the same question: Should we do this (the loop body)

again? As humans we would find it boring to be so limited in our decision-making processes.

We need to decide not only whether to go to work again today (continuing the loop), but also

whether to buy a red shirt or a green one (or no shirt at all), whether to take a vacation, and if

so, in the mountains or by the sea.

Programs also need to make these one-time decisions. In a program a decision causes a one-

time jump to a different part of the program, depending on the value of an expression.

