Loops and Decisions 19

Decisions can be made in C++ in several ways. The most important is with the if...else
statement, which chooses between two alternatives. This statement can be used without the
else, as a simple if statement. Another decision statement, switch, creates branches for multi-
ple alternative sections of code, depending on the value of a single variable. Finally, the condi-
tional operator is used in specialized situations. We’ll examine each of these constructions.

The 1if Statement

The if statement is the simplest of the decision statements. Our next program, IFDEMO, pro-
vides an example.

// ifdemo.cpp

// demonstrates IF statement
#include <iostream>

using namespace std;

int mainQ)

{

int x;

cout << “Enter a number: “;

cin >> X;
if(x > 100)
cout << “That number 1is greater than 100\n”;
return 0;
}

The if keyword is followed by a test expression in parentheses. The syntax of the if statement
is shown in Figure 3.7. As you can see, the syntax of if is very much like that of while. The
difference is that the statements following the if are executed only once if the test expression
is true; the statements following while are executed repeatedly until the test expression
becomes false. Figure 3.8 shows the operation of the if statement.

Here’s an example of the IFDEMO program’s output when the number entered by the user is
greater than 100:

Enter a number: 2000
That number is greater than 100

If the number entered is not greater than 100, the program will terminate without printing the
second line.

20 Chapter 3

FIGURE 3.7
Syntax of the i f statement.

FIGURE 3.8
Operation of the if statement.

Loops and Decisions 21

Multiple Statements in the if Body

As in loops, the code in an if body can consist of a single statement—as shown in the IFDEMO
example—or a block of statements delimited by braces. This variation on IFDEMO, called 1F2,
shows how that looks.

// if2.cpp

// demonstrates IF with multiline body
#include <iostream>

using namespace std;

int mainQ

{
int x;
cout << “Enter a number: “;
cin >> x;
if(x > 100)
{
cout << “The number “ << x;
cout << “ 1is greater than 100\n”;

}

return 0;

}

Here’s some output from 1F2:

Enter a number: 12345
The number 12345 is greater than 100

Nesting ifs Inside Loops

The loop and decision structures we’ve seen so far can be nested inside one another. You can
nest ifs inside loops, loops inside ifs, ifs inside ifs, and so on. Here’s an example, PRIME,
that nests an if within a for loop. This example tells you whether a number you enter is a
prime number. (Prime numbers are integers divisible only by themselves and 1. The first few
primes are 2, 3,5,7,11, 13, 17.)

// prime.cpp

// demonstrates IF statement with prime numbers
#include <iostream>

using namespace std;

#include <process.h> //for exit(Q

int mainQ)

{

unsigned long n, j;

29 Chapter 3

cout << “Enter a number: “;

cin >> n; //get number to test
for(j=2; j <= n/2; j++) //divide by every integer from
if(n%j == 0) //2 on up; if remainder is 0,

{ //it’s divisible by j
cout << “It’s not prime; divisible by “ << j << endl;
exit(0); //exit from the program
}

cout << “It’s prime\n”;

return 0;

}

In this example the user enters a number that is assigned to n. The program then uses a for
loop to divide n by all the numbers from 2 up to n/2. The divisor is j, the loop variable. Ifany
value of j divides evenly into n, then n is not prime. When a number divides evenly into
another, the remainder is 0; we use the remainder operator % in the if statement to test for this
condition with each value of j. If the number is not prime, we tell the user and we exit from
the program.

Here’s output from three separate invocations of the program:

Enter a number: 13

It’s prime

Enter a number: 22229

It’s prime

Enter a number: 22231

It’s not prime; divisible by 11

Notice that there are no braces around the loop body. This is because the if statement, and the
statements in its body, are considered to be a single statement. If you like you can insert braces
for readability, even though the compiler doesn’t need them.

Library Function exitQ

When PRIME discovers that a number is not prime, it exits immediately, since there’s no use
proving more than once that a number isn’t prime. This is accomplished with the library func-
tion exit(). This function causes the program to terminate, no matter where it is in the listing.
It has no return value. Its single argument, 0 in our example, is returned to the operating sys-
tem when the program exits. (This value is useful in batch files, where you can use the
ERRORLEVEL value to query the return value provided by exit(). The value 0 is normally used
for a successful termination; other numbers indicate errors.)

w

SNOISID3g
ANV SdOO07

Loops and Decisions 23

The if...elseStatement

The if statement lets you do something if a condition is true. If it isn’t true, nothing happens.
But suppose we want to do one thing if a condition is true, and do something else if it’s false.
That’s where the if...else statement comes in. It consists of an if statement, followed by a
statement or block of statements, followed by the keyword else, followed by another state-
ment or block of statements. The syntax is shown in Figure 3.9.

Fhﬂﬂpﬁﬂm
o~
if (x>100)

statement; __—"""" gingle-statementif body

else

statement; """ gjngle.statement else body

(Feslexpression
P,
if (zebra!=0)
{
BEELEREI Multiple-statement if body
statement;
}
else
{

statement; .
Multiple-statement else body
statement;

¥

FIGURE 3.9
Syntax of the if...else statement.

Here’s a variation of our IF example, with an else added to the if:

// ifelse.cpp

// demonstrates IF...ELSE statememt
#include <iostream>

using namespace std;

24 Chapter 3

int main(Q

{

int x;

cout << “\nEnter a number: “;

cin >> Xx;
if(x > 100)

cout << “That number 1is greater than 100\n”;
else

cout << “That number is not greater than 100\n”;
return 0;
}

If the test expression in the if statement is true, the program prints one message; if it isn’t, it
prints the other.

Here’s output from two different invocations of the program:

Enter a number: 300
That number is greater than 100
Enter a number: 3

That number is not greater than 100

The operation of the if. ..else statement is shown in Figure 3.10.

FiGUure 3.10

Operation ofthe if...else statement.

w

SNoISID3J
ANV Sd007

Loops and Decisions o5

The getche () Library Function

Our next example shows an if...else statement embedded in a while loop. It also introduces
a new library function: getche(). This program, CHCOUNT, counts the number of words and the
number of characters in a phrase typed in by the user.

// chcount.cpp

// counts characters and words typed in
#include <iostream>

using namespace std;

#include <conio.h> //for getche()

int main(Q
{
int chcount=0; //counts non-space characters
int wdcount=1; //counts spaces between words
char ch = ‘a’; //ensure it isn’t ‘\r’

cout << “Enter a phrase: “;

while(ch !'= ‘\r’) //Toop until Enter typed
{
ch = getche(Q); //read one character
if(ch==") //if it’s a space
wdcount++; //count a word
else //otherwise,
chcount++; //count a character
} //display results

<< wdcount << endl
<< (chcount-1) << endl;

cout << “\nwords=’
<< “Letters=’
return 0;

}

So far we’ve used only cin and >> for input. That approach requires that the user always press
the Enter key to inform the program that the input is complete. This is true even for single
characters: The user must type the character, then press Enter. However, as in the present
example, a program often needs to process each character typed by the user without waiting for
an Enter. The getche() library function performs this service. It returns each character as soon
as it’s typed. It takes no arguments, and requires the CONIO.H header file. In CHCOUNT the value
of the character returned from getche() is assigned to ch. (The getche() function echoes the
character to the screen. That’s why there’s an e at the end of getche. Another function,
getch(), is similar to getche() but doesn’t echo the character to the screen.)

The if...else statement causes the word count wdcount to be incremented if the character is
a space, and the character count chcount to be incremented if the character is anything but a
space. Thus anything that isn’t a space is assumed to count as a character. (Note that this pro-
gram is fairly naive; it will be fooled by multiple spaces between words.)

26 Chapter 3

Here’s some sample interaction with CHCOUNT:

For while and do
words=4
Letters=13

The test expression in the whiTle statement checks to see if ch is the ‘\r’ character, which is
the character received from the keyboard when the Enter key is pressed. If so, the loop and the
program terminate.

Assignment Expressions

The CHCOUNT program can be rewritten to save a line of code and demonstrate some important
points about assignment expressions and precedence. The result is a construction that looks
rather peculiar but is commonly used in C++ (and in C).

Here’s the rewritten version, called CHCNT2:

// chcnt2.cpp

// counts characters and words typed in
#include <iostream>

using namespace std;

#include <conio.h> // for getche()
int mainQ)
{
int chcount=0;
int wdcount=1; // space between two words
char ch;
while((ch=getche()) != ‘\r’) // Toop until Enter typed
{
if(ch==" *) // if it’s a space
wdcount++; // count a word
else // otherwise,
chcount++; // count a character
} // display results

<< wdcount << endl
<< chcount << endl;

cout << “\nwords=’
<< “Letters=’
return 0;

}

The value returned by getche() is assigned to ch as before, but this entire assignment expres-
sion has been moved inside the test expression for while. The assignment expression is com-
pared with ‘\r’ to see whether the loop should terminate. This works because the entire
assignment expression takes on the value used in the assignment. That is, if getche() returns
‘a’, then not only does ch take on the value ‘a’, but the expression

w

SNOISID3g
ANV SdOO07

Loops and Decisions 97

(ch=getche())

also takes on the value ‘a’. This is then compared with ‘\r’.

The fact that assignment expressions have a value is also used in statements such as
x=y=2z=0;

This is perfectly legal in C++. First, z takes on the value 0, then z=0 takes on the value 0,
which is assigned to y. Then the expression y=z=0 likewise takes on the value 0, which is
assigned to x.

The parentheses around the assignment expression in
(ch=getche())

are necessary because the assignment operator = has a lower precedence than the relational
operator !=. Without the parentheses the expression would be evaluated as

while(ch = (getche(Q) != “\r’)) // not what we want
which would assign a true or false value to ch (not what we want).

The while statement in CHCNT2 provides a lot of power in a small space. It is not only a test
expression (checking ch to see whether it’s “\r’); it also gets a character from the keyboard
and assigns it to ch. It’s also not easy to unravel the first time you see it.

Nested if...else Statements

You’re probably too young to remember adventure games on early character-mode MS-DOS
systems, but let’s resurrect the concept here. You moved your “character” around an imaginary
landscape and discovered castles, sorcerers, treasure, and so on, using text—not pictures—for
input and output. The next program, ADIFELSE, models a small part of such an adventure game.

// adifelse.cpp

// demonstrates IF...ELSE with adventure program
#include <iostream>

using namespace std;

#include <conio.h> //for getche()

int mainQ)

{
char dir="a’;
int x=10, y=10;

cout << “Type Enter to quit\n”;

while(dir != ‘\r’) //until Enter 1is typed
{
cout << “\nyour Tocation is “ << x << “, “ << vy;

cout << “\nPress direction key (n, s, e, w): “;

8 Chapter 3
dir = getcheQ; //get character
if(dir=="n") //g0o north
y--3
else
if(dir=="s’) //g0o south
y++;
else
if(dir=="e’) //go east
X4+
else
ifC dir=="w’) //90 west
X--;
} //end while
return 0;

} //end main

When the game starts, you find yourself on a barren moor. You can go one “unit” north,
south, east, or west, while the program keeps track of where you are and reports your position,
which starts at coordinates 10,10. Unfortunately, nothing exciting happens to your character,
no matter where you go; the moor stretches almost limitlessly in all directions, as shown in
Figure 3.11. We'll try to provide a little more excitement to this game later on.

Here’s some sample interaction with ADIFELSE:

Your Tlocation is 10, 10

Press direction key (n, s, e, w): n
Your location is 10, 9

Press direction key (n, s, e, w): e
Your location is 11, 9

Press direction key (n, s, e, w):

You can press the Enter key to exit the program.

This program may not cause a sensation in the video arcades, but it does demonstrate one way
to handle multiple branches. It uses an if statement nested inside an if...else statement,
which is nested inside another if...else statement, which is nested inside yet another
if...else statement. If the first test condition is false, the second one is examined, and so on
until all four have been checked. If any one proves true, the appropriate action is taken—
changing the x or y coordinate—and the program exits from all the nested decisions. Such a
nested group of if...else statements is called a decision tree.

w

SNOISIDAg
ANV SdOO07

Loops and Decisions 29

N
W \|
If -+ . \f
\f + \{7
1 4
A\
T Y
A = [MY A\l
It --..y i
\(@i~ | . "
(@) Nt
-+~ $O
w.rr..:x,.i\r.;,,i,rE
T < ¢ 7T
43.{ 4 i
% 1y A\
Ny 1 L N/
\i/
1 ol i
4 Y| i
A/ Nt T
£\ |/ il N/ " \l
1 NI \
S
FIGURE 3.11
The barren moor.
Matchingtheeise

There’s a potential problem in nested if...else statements: You can inadvertently match an
else with the wrong if. BADELSE provides an example:

// badelse.cpp

// demonstrates ELSE matched with wrong IF
#include <iostream>

using namespace std;

int mainQ)
{
int a, b, c;
cout << “Enter three numbers, a, b, and c:\n”;
cin >> a >> b > c;

30 Chapter 3

if(a==b)

if(b==c)

cout << “a, b, and c are the same\n”;

else

cout << “a and b are different\n”;
return 0;
}

We’ve used multiple values with a single cin. Press Enter following each value you type in;
the three values will be assigned to a, b, and c.

What happens if you enter 2, then 3, and then 3? Variable a is 2, and b is 3. They’re different,
so the first test expression is false, and you would expect the else to be invoked, printing a
and b are different. But in fact nothing is printed. Why not? Because the else is matched with
the wrong if. The indentation would lead you to believe that the else is matched with the first
if, but in fact it goes with the second if. Here’s the rule: An else is matched with the last i f
that doesn’t have its own else.

Here’s a corrected version:

if(a==b)
if(b==c)

cout << “a, b, and c are the same\n”;
else
cout << “b and c are different\n”;

We changed the indentation and also the phrase printed by the e1se body. Now if you enter 2,
3, 3, nothing will be printed. But entering 2, 2, 3 will cause the output

b and c are different

If you really want to pair an e1se with an earlier if, you can use braces around the inner if:

if(a==b)
{
if(b==0)
cout << “a, b, and c are the same”;
}
else

cout << “a and b are different”;

Here the else is paired with the first if, as the indentation indicates. The braces make the if
within them invisible to the following else.

o8

SNOISID3J
ANV Sd007

Loops and Decisions 31

The else...if Construction

The nested if...else statements in the ADIFELSE program look clumsy and can be hard—for
humans—to interpret, especially if they are nested more deeply than shown. However, there’s
another approach to writing the same statements. We need only reformat the program, obtain-
ing the next example, ADELSEIF.

// adelseif.cpp

// demonstrates ELSE...IF with adventure program
#include <iostream>

using namespace std;

#include <conio.h> //for getche()

int mainQ)

{
char dir="a’;
int x=10, y=10;

cout << “Type Enter to quit\n”;

while(dir != “\r’) //until Enter 1is typed
{
cout << “\nyour Tlocation is “ << x << “, “ << vy;
cout << “\nPress direction key (n, s, e, w): “;
dir = getche(Q; //get character
if(dir=="n’) //go north
y--3;
else if(dir=="s’) //go south
y++;
else if(dir=="e’) //go east
X++;
else if(dir=="w’) //do west
X==3
} //end while
return 0;

} //end main

The compiler sees this as identical to ADIFELSE, but we’ve rearranged the i fs so they directly
follow the elses. The result looks almost like a new keyword: e1se if. The program goes
down the ladder of e1se ifs until one of the test expressions is true. It then executes the fol-
lowing statement and exits from the ladder. This format is clearer and easier to follow than the
if...else approach.

32 Chapter 3

The switch Statement

If you have a large decision tree, and all the decisions depend on the value of the same vari-
able, you will probably want to consider a switch statement instead of a ladder of if...else
or else if constructions. Here’s a simple example called PLATTERS that will appeal to nostal-
gia buffs:

// platters.cpp

// demonstrates SWITCH statement
#include <iostream>

using namespace std;

int main(Q
{
int speed; //turntable speed

cout << “\nEnter 33, 45, or 78: “;

cin >> speed; //user enters speed
switch(speed) //selection based on speed
{
case 33: //user entered 33
cout << “LP album\n”;
break;
case 45: //user entered 45
cout << “single selection\n”;
break;
case 78: //user entered 78
cout << “Obsolete format\n”;
break;
}
return 0;
3

This program prints one of three possible messages, depending on whether the user inputs the
number 33, 45, or 78. As old-timers may recall, long-playing records (LPs) contained many
songs and turned at 33 rpm, the smaller 45°s held only a single song, and 78s were the format
that preceded LPs and 45s.

The keyword switch is followed by a switch variable in parentheses.
switch(speed)

Braces then delimit a number of case statements. Each case keyword is followed by a
constant, which is not in parentheses but is followed by a colon.

case 33:

The data type of the case constants should match that of the switch variable. Figure 3.12 shows
the syntax of the switch statement.

s

SNOISID3g

ANV SdOO07

00ps and Decisions 33

rhm&meMHmmm
switch (n)¢ >— Note: nosemicolon here
{ [" Integer or character constant
case 1:
statement;
statement; 2 Firstcase body
break;_‘—mme:ﬁtk&msﬂiﬂ
case 2:
statement;
statement; ¢ Secondcase body
break;
case 3:
statement;
statement; ¢ Thirdcase body
break;
default:
statement;
statement; }Dﬂmnmw

31— Note: no semicolon here

FIGURE 3.12

Syntax of the switch statement.

Before entering the switch, the program should assign a value to the switch variable. This
value will usually match a constant in one of the case statements. When this is the case (pun
intended!), the statements immediately following the keyword case will be executed, until a
break is reached.

Here’s an example of PLATTER’s output:

Enter 33, 45, or 78: 45
Single selection

34 Chapter 3

The break Statement

PLATTERS has a break statement at the end of each case section. The break keyword causes the
entire switch statement to exit. Control goes to the first statement following the end of the
switch construction, which in PLATTERS is the end of the program. Don’t forget the break;
without it, control passes down (or “falls through”) to the statements for the next case, which
is usually not what you want (although sometimes it’s useful).

If the value of the switch variable doesn’t match any of the case constants, control passes to
the end of the switch without doing anything. The operation of the switch statement is shown
in Figure 3.13. The break keyword is also used to escape from loops; we’ll discuss this soon.

FiGure 3.13

Operation of the switch statement.

w

SNOISID3g

ANV SdOO07

00ps and Decisions 35

switch Statement with Character Variables
The PLATTERS example shows a switch statement based on a variable of type int. You can also
use type char. Here’s our ADELSEIF program rewritten as ADSWITCH:

// adswitch.cpp

// demonstrates SWITCH with adventure program

#include <iostream>

using namespace std;

#include <conio.h> //for getche()

int main(Q)

{
char dir="a’;
int x=10, y=10;

while(dir != “\r’)

{

cout << “\nyour Tocation is “ << x << “, “ << vy;

cout << “\neEnter direction (n, s, e, w): “;

dir = getche(Q; //get character

switch(dir) //switch on it
{
case ‘n’ y--; break; //g0 north
case ‘s’: y++; break; //g0 south
case ‘e’ X++; break; //go east
case ‘w’: x--; break; //go west
case ‘\r’: cout << “Exiting\n”; break; //Enter key
default: cout << “Try again\n”; //unknown char

} //end switch
} //end while
return 0;
} //end main

A character variable dir is used as the switch variable, and character constants ‘n’, ‘s’, and
so on are used as the case constants. (Note that you can use integers and characters as switch
variables, as shown in the last two examples, but you can’t use floating-point numbers.)

Since they are so short, the statements following each case keyword have been written on one
line, which makes for a more compact listing. We’ve also added a case to print an exit mes-
sage when Enter is pressed.

The default Keyword

In the ADSWITCH program, where you expect to see the last case at the bottom of the switch
construction, you instead see the keyword default. This keyword gives the switch construc-
tion a way to take an action if the value of the loop variable doesn’t match any of the case
constants. Here we use it to print Try again if the user types an unknown character. No break
is necessary after default, since we’re at the end of the switch anyway.

36 Chapter 3

A switch statement is a common approach to analyzing input entered by the user. Each of the
possible characters is represented by a case.

It’s a good idea to use a default statement in all switch statements, even if you don’t think
you need it. A construction such as

default:
cout << “Error: incorrect input to switch”; break;

alerts the programmer (or the user) that something has gone wrong in the operation of the pro-
gram. In the interest of brevity we don’t always include such a default statement, but you
should, especially in serious programs.

switch Versus if...else

When do you use a series of if...else (or else if) statements, and when do you use a
switch statement? In an else if construction you can use a series of expressions that involve
unrelated variables and are as complex as you like. For example:

if(SteamPressure*Factor > 56)
// statements

else if(voltageIn + Voltageout < 23000)
// statements

else if(day==Thursday)
// statements

else
// statements

In a switch statement, however, all the branches are selected by the same variable; the only
thing distinguishing one branch from another is the value of this variable. You can’t say

case a<3:
// do something
break;

The case constant must be an integer or character constant, like 3 or ‘a’, or an expression that
evaluates to a constant, like ‘a’+32.

When these conditions are met, the switch statement is very clean—easy to write and to
understand. It should be used whenever possible, especially when the decision tree has more
than a few possibilities.

The Conditional Operator

Here’s a strange sort of decision operator. It exists because of a common programming situa-
tion: A variable is given one value if something is true and another value if it’s false. For
example, here’s an if...else statement that gives the variable min the value of alpha or the
value of beta, depending on which is smaller:

OS]

SNOISID3g
ANV SdOO07

Loops and Decisions 37

if(alpha < beta)
min = alpha;
else
min = beta;

This sort of construction is so common that the designers of C++ (actually the designers of C,
long ago) invented a compressed way to express it: the conditional operator. This operator
consists of two symbols, which operate on three operands. It’s the only such operator in C++;
other operators operate on one or two operands. Here’s the equivalent of the same program
fragment, using a conditional operator:

min = (alpha<beta) ? alpha : beta;
The part of this statement to the right of the equal sign is called the conditional expression:
(alpha<beta) ? alpha : beta // conditional expression

The question mark and the colon make up the conditional operator. The expression before the
question mark

(alpha<beta)
is the test expression. It and alpha and beta are the three operands.

If the test expression is true, the entire conditional expression takes on the value of the operand
following the question mark: alpha in this example. If the test expression is false, the condi-
tional expression takes on the value of the operand following the colon: beta. The parentheses
around the test expression aren’t needed for the compiler, but they’re customary; they make the
statement easier to read (and it needs all the help it can get). Figure 3.14 shows the syntax of
the conditional statement, and Figure 3.15 shows its operation.

I— Conditional expression
A
result = (alpha<77) ? beta : gamma;
\--""‘v—i-—’
. mwmj Expression 1| Expression 2

Conditional operator

FiGUure 3.14

Syntax of the conditional operator.

Chapter 3

38

: : F
e alse

True

on value of Expression 1. on value of Expression 2,

|

co—

l,
-

FIGURE 3.15

Operation of the conditional operator.

The conditional expression can be assigned to another variable or used anywhere a value can
be used. In this example it’s assigned to the variable min.

Here’s another example: a statement that uses a conditional operator to find the absolute value
of a variable n. (The absolute value of a number is the number with any negative sign removed,
so it’s always positive.)

absvalue = n<0 ? -n : n;

If n is less than 0, the expression becomes -n, a positive number. If n is not less than 0, the
expression remains n. The result is the absolute value of n, which is assigned to absvalue.

Here’s a program, CONDI.CPP, that uses the conditional operator to print an x every eight spaces
in a line of text. You might use this to see where the tab stops are on your screen.

// condi.cpp

// prints ‘x’ every 8 columns

// demonstrates conditional operator
#include <iostream>

using namespace std;

int mainQ)

{

w

SNOISID3g
ANV SdOO07

00ps and Decisions 39

for(int j=0; j<80; j++) //for every column,
{ //ch is ‘x’ if column is
char ch = (3%8) ? * * : ‘x’; //multiple of 8, and
cout << ch; //’ * (space) otherwise
}

return 0;

}

Some of the right side of the output is lost because of the page width, but you can probably
imagine it:
X X X X X X X X X

As j cycles through the numbers from 0 to 79, the remainder operator causes the expression (j
% 8) to become false—that is, 0—only when j is a multiple of 8. So the conditional expression

(G%8) ? ¢ X’
has the value ¢ * (the space character) when j is not a multiple of 8, and the value ‘x’ when
it is.

You may think this is terse, but we could have combined the two statements in the loop body
into one, eliminating the ch variable:

cout << (C (3%8) ? * “ : ‘X’)3

Hotshot C++ (and C) programmers love this sort of thing—getting a lot of bang from very lit-
tle code. But you don’t need to strive for concise code if you don’t want to. Sometimes it
becomes so obscure it’s not worth the effort. Even using the conditional operator is optional:
Anif...else statement and a few extra program lines will accomplish the same thing.

Logical Operators

So far we’ve seen two families of operators (besides the oddball conditional operator). First are
the arithmetic operators +, -, *, /, and %. Second are the relational operators <, >, <=, >=, ==,
and !=.

Let’s examine a third family of operators, called logical operators. These operators allow you
to logically combine Boolean variables (that is, variables of type boo1, with true or false val-
ues). For example, today is a weekday has a Boolean value, since it’s either true or false.
Another Boolean expression is Maria took the car. We can connect these expressions logically:
If today is a weekday, and Maria took the car, then I’ll have to take the bus. The logical con-
nection here is the word and, which provides a true or false value to the combination of the
two phrases. Only if they are both true will I have to take the bus.

40 Chapter 3

Logical ANDOperator

Let’s see how logical operators combine Boolean expressions in C++. Here’s an example,
ADVENAND, that uses a logical operator to spruce up the adventure game from the ADSWITCH
example. We’ll bury some treasure at coordinates (7,11) and see whether the player can find it.

// advenand.cpp

// demonstrates AND Tlogical operator
#include <iostream>

using namespace std;

#include <process.h> //for exit()
#include <conio.h> //for getche()
int mainQ)

{

char dir="a’;
int x=10, y=10;

while(dir !'= ‘\r’)

{
cout << “\nyour Tocation is “ << x << “, “ << y;
cout << “\nEnter direction (n, s, e, w): “;
dir = getcheQ; //get direction
switch(dir)
{
case ‘n’: y--; break; //update coordinates
case ‘s’: y++; break;
case ‘e’: x++; break;
case ‘w’: x--; break;
3
if(x==7 && y==11) //if x is 7 and y is 11
{
cout << “\nyou found the treasure!\n”;
exit(0); //exit from program
}
} //end switch
return 0;

} //end main
The key to this program is the if statement
if(x==7 && y==11)

The test expression will be true only if x is 7 and y is 11. The logical AND operator && joins the
two relational expressions to achieve this result. (A relational expression is one that uses a
relational operator.)

(98

SNoISIDIQ
ANV Sd007

Loops and Decisions 41

Notice that parentheses are not necessary around the relational expressions.
((x==7) && (y==11)) // inner parentheses not necessary
This is because the relational operators have higher precedence than the logical operators.

Here’s some interaction as the user arrives at these coordinates:

Your location is 7, 10
Enter direction (n, s, e, w): s
You found the treasure!

There are three logical operators in C++:

Operator Effect
&& Logical AND
[Logical or

! Logical NOT
There is no logical XorR (exclusive OR) operator in C++.

Let’s look at examples of the || and ! operators.

Logical OR Operator

Suppose in the adventure game you decide there will be dragons if the user goes too far east or
too far west. Here’s an example, ADVENOR, that uses the logical OR operator to implement this
frightening impediment to free adventuring. It’s a variation on the ADVENAND program.

// advenor.cpp

// demonstrates OR Tlogical operator
#include <iostream>

using namespace std;

#include <process.h> //for exit(
#include <conio.h> //for getche()
int mainQ

{

char dir="a’;
int x=10, y=10;

while(dir != ‘\r’) //quit on Enter key
{
cout << “\n\nyour location is “ << x << “, “ << vy;
if(x<5 || x>15) //if x west of 5 OR east of 15

cout << “\nBeware: dragons lurk here”;

42 Chapter 3

cout << “\neEnter direction (n, s, e, w): “;

dir = getche(Q); //get direction
switch(dir)
{
case ‘n’: y--; break; //update coordinates
case ‘s’: y++; break;
case ‘e’: x++; break;
case ‘w’: x--; break;

} //end switch
} //end while
return 0;

} //end main(Q)
The expression
x<5 || x>15

is true whenever either x is less than 5 (the player is too far west), or x is greater than 15 (the
player is too far east). Again, the || operator has lower precedence than the relational opera-
tors < and >, so no parentheses are needed in this expression.

Logical NOT Operator

The logical NOT operator ! is a unary operator—that is, it takes only one operand. (Almost all
the operators we’ve seen thus far are binary operators; they take two operands. The conditional
operator is the only ternary operator in C++.) The effect of the ! is that the logical value of its
operand is reversed: If something is true, ! makes it false; if it is false, ! makes it true. (It
would be nice if life were so easily manipulated.)

For example, (x==7) is true if x is equal to 7, but ! (x==7) is true if x is not equal to 7. (In this
situation you could use the relational not equals operator, x != 7, to achieve the same effect.)

A True/False Value for Every Integer Variable

We may have given you the impression that for an expression to have a true/false value, it must
involve a relational operator. But in fact, every integer expression has a true/false value, even if
it is only a single variable. The expression x is true whenever x is not 0, and false when x is 0.
Applying the ! operator to this situation, we can see that the !x is true whenever x is 0, since it
reverses the truth value of x.

Let’s put these ideas to work. Imagine in your adventure game that you want to place a mush-
room on all the locations where both x and y are a multiple of 7. (As you probably know,
mushrooms, when consumed by the player, confer magical powers.) The remainder when x is
divided by 7, which can be calculated by x%7, is 0 only when x is a multiple of 7. So to specify
the mushroom locations, we can write

if(x%7==0 && y%7==0)
cout << “There’s a mushroom here.\n”;

w

SNoISID3J

ANV Sd007

Loops and Decisions 43

However, remembering that expressions are true or false even if they don’t involve relational
operators, you can use the ! operator to provide a more concise format.

FfC T(x%7) && ' (y%7)) // if not x%7 and not y%7
This has exactly the same effect.

We’ve said that the logical operators & and || have lower precedence than the relational oper-
ators. Why then do we need parentheses around x%7 and y%7? Because, even though it is a log-
ical operator, ! is a unary operator, which has higher precedence than relational operators.

Precedence Summary

Let’s summarize the precedence situation for the operators we’ve seen so far. The operators
higher on the list have higher precedence than those lower down. Operators with higher prece-
dence are evaluated before those with lower precedence. Operators on the same row have equal
precedence. You can force an expression to be evaluated first by placing parentheses around it.

You can find a more complete precedence table in Appendix B, “C++ Precedence Table and
Keywords.”

Operator type Operators Precedence
Unary L4+, ——, +, — Highest
Arithmetic Multiplicative *, /, %
Additive +, -
Relational Inequality <, >, <=, >=
Equality ==, !=
Logical And &&
Or ||
Conditional ?:
Assignment =, +=, —=, *= /= %= Lowest

We should note that if there is any possibility of confusion in a relational expression that
involves multiple operators, you should use parentheses whether they are needed or not. They
don’t do any harm, and they guarantee the expression does what you want, even if you’ve
made a mistake with precedence. Also, they make it clear to anyone reading the listing what
you intended.

Other Control Statements

There are several other control statements in C++. We’ve already seen one, break, used in
switch statements, but it can be used other places as well. Another statement, continue, is
used only in loops, and a third, goto, should be avoided. Let’s look at these statements in turn.

44 Chapter 3

The break Statement

The break statement causes an exit from a loop, just as it does from a switch statement. The
next statement after the break is executed is the statement following the loop. Figure 3.16
shows the operation of the break statement.

{

R .

cml::p,___ break;
Normal i
loop
retum
End of loop

FIGURE 3.16

Operation of the break statement.

To demonstrate break, here’s a program, SHOWPRIM, that displays the distribution of prime
numbers in graphical form:

// showprim.cpp

// displays prime number distribution

#include <iostream>

using namespace std;

#include <conio.h> //for getche()

int main()
{
const unsigned char WHITE = 219; //solid color (primes)
const unsigned char GRAY = 176; //gray (non primes)
unsigned char ch;
//for each screen position

for(int count=0; count<80%25-1; count++)

{

ch = WHITE; //assume it’s prime

w

SNOISID3g
ANV SdOO07

Loops and Decisions 45

for(int j=2; j<count; j++) //divide by every integer from

if(count%j == 0) //2 on up; if remainder is 0,
{
ch = GRAY; //it’s not prime
break; //break out of inner loop
}
cout << ch; //display the character
}
getch(Q); //freeze screen until keypress
return O;

}

In effect every position on an 80-column by 25-line console screen is numbered, from 0 to
1999 (which is 80*25—1). If the number at a particular position is prime, the position is colored
white; if it’s not prime, it’s colored gray.

Figure 3.17 shows the display. Strictly speaking, 0 and 1 are not considered prime, but they are
shown as white to avoid complicating the program. Think of the columns across the top as
being numbered from 0 to 79. Notice that no primes (except 2) appear in even-numbered
columns, since they’re all divisible by 2. Is there a pattern to the other numbers? The world of
mathematics will be very excited if you find a pattern that allows you to predict whether any
given number is prime.

FIGURE 3.17

Output of SHOWPRIM program.

46 Chapter 3

When the inner for loop determines that a number is not prime, it sets the character ch to
GRAY, and then executes break to escape from the inner loop. (We don’t want to exit from the
entire program, as in the PRIME example, since we have a whole series of numbers to work on.)

Notice that break only takes you out of the innermost loop. This is true no matter what con-
structions are nested inside each other: break only takes you out of the construction in which
it’s embedded. If there were a switch within a loop, a break in the switch would only take
you out of the switch, not out of the loop.

The last cout statement prints the graphics character, and then the loop continues, testing the
next number for primeness.

ASCIl Extended Character Set

This program uses two characters from the extended ASCII character set, the characters repre-
sented by the numbers from 128 to 255, as shown in Appendix A, “ASCII Table.” The value
219 represents a solid-colored block (white on a black-and-white monitor), while 176 repre-
sents a gray block.

The sSHOWPRIM example uses getch() in the last line to keep the DOS prompt from scrolling
the screen up when the program terminates. It freezes the screen until you press a key.

We use type unsigned char for the character variables in SHOWPRIM, since it goes up to 255.
Type char only goes up to 127.

The continue Statement

The break statement takes you out of the bottom of a loop. Sometimes, however, you want to
go back to the top of the loop when something unexpected happens. Executing continue has
this effect. (Strictly speaking, the continue takes you to the closing brace of the loop body,
from which you may jump back to the top.) Figure 3.18 shows the operation of continue.

Here’s a variation on the DIVDO example. This program, which we saw earlier in this chapter,
does division, but it has a fatal flaw: If the user inputs 0 as the divisor, the program undergoes
catastrophic failure and terminates with the runtime error message Divide Error. The revised
version of the program, DIVDO2, deals with this situation more gracefully.

// divdo2.cpp

// demonstrates CONTINUE statement
#include <iostream>

using namespace std;

int main(Q)
{
long dividend, divisor;
char ch;

w

SNOISID3g

ANV SdOO07

Loops and Decisions 47

do {

cout << “Enter dividend: “; cin >> dividend;

cout << “Enter divisor: “; c¢in >> divisor;

if(divisor == 0) //if attempt to
{ //divide by 0,
cout << “I1legal divisor\n”; //display message
continue; //go to top of loop
}

cout << “Quotient is << dividend / divisor;

cout << “, remainder is “ << dividend % divisor;

cout << “\nbo another? (y/n): “;

cin >> ch;
} whileC ch '= ‘n’);
return 0;
}
L Start of loop
m — continue;;
Normal 7
loop
return
FIGURE 3.18

Operation of the continue statement.

If the user inputs 0 for the divisor, the program prints an error message and, using continue,
returns to the top of the loop to issue the prompts again. Here’s some sample output:

Enter dividend: 10

Enter divisor: 0

I1legal divisor
Enter dividend:

A break statement in this situation would cause an exit from the do loop and the program, an
unnecessarily harsh response.

48 Chapter 3

Notice that we’ve made the format of the do loop a little more compact. The do is on the same
line as the opening brace, and the while is on the same line as the closing brace.

The goto Statement

We’ll mention the goto statement here for the sake of completeness—not because it’s a good
idea to use it. If you’ve had any exposure to structured programming principles, you know that
gotos can quickly lead to “spaghetti” code that is difficult to understand and debug. There is
almost never any need to use goto, as is demonstrated by its absence from the program exam-
ples in this book.

With that lecture out of the way, here’s the syntax. You insert a label in your code at the
desired destination for the goto. The label is always terminated by a colon. The keyword goto,
followed by this label name, then takes you to the label. The following code fragment demon-
strates this approach.

goto SystemCrash;
// other statements
SystemCrash:

// control will begin here following goto

Summary

Relational operators compare two values to see whether they’re equal, whether one is larger
than the other, and so on. The result is a logical or Boolean (type boo1) value, which is true or
false. False is indicated by 0, and true by 1 or any other non-zero number.

There are three kinds of loops in C++. The for loop is most often used when you know in
advance how many times you want to execute the loop. The while loop and do loops are used
when the condition causing the loop to terminate arises within the loop, with the while loop
not necessarily executing at all, and the do loop always executing at least once.

A loop body can be a single statement or a block of multiple statements delimited by braces. A
variable defined within a block is visible only within that block.

There are four kinds of decision-making statements. The if statement does something if a test
expression is true. The if...else statement does one thing if the test expression is true, and
another thing if it isn’t. The e1se if construction is a way of rewriting a ladder of nested
if...else statements to make it more readable. The switch statement branches to multiple
sections of code, depending on the value of a single variable. The conditional operator simpli-
fies returning one value if a test expression is true, and another if it’s false.

The logical AND and OR operators combine two Boolean expressions to yield another one, and
the logical NOT operator changes a Boolean value from true to false, or from false to true.

T

SNOISID3g

ANV SdOO07

