
Loops and Decisions

Decisions can be made in C++ in several ways. The most important is with the

statement, which chooses between two alternatives. This statement can be used without the

, as a simple statement. Another decision statement, , creates branches for multi-

ple alternative sections of code, depending on the value of a single variable. Finally, the condi-

nstructions.

The statement is the simplest of the decision statements. Our next program, IFDEMO, pro-

vides an example.

The keyword is followed by a test expression in parentheses. The syntax of the statement

is very much like that of . The

difference is that the statements following the are executed only once if the test expression

is true; the statements following are executed repeatedly until the test expression

the operation of the statement.

IFDEMO

ll terminate without printing the

second line.

Syntax of the statement.

Operation of the statement.

Loops and Decisions

As in loops, the code in an body can consist of a single statement as shown in the IFDEMO

example or a block of statements delimited by braces. This variation on IFDEMO, called IF

shows how that looks.

IF

nest s inside loops, loops inside s, s inside PRIME,

that nests an within a loop. This example tells you whether a number you enter is a

In this example the user enters a number that is assigned to . The program then uses a

loop to divide by all the numbers from up to . The divisor is , the loop variable. If any

value of divides evenly into , then is not prime. When a number divides evenly into

 remainder operator in the statement to test for this

condition with each value of . If the number is not prime, we tell the user and we exit from

the program.

Notice that there are no braces around the loop body. This is because the statement, and the

statements in its body, are considered to be a single statement. If you like you can insert braces

When PRIME

-

tion . This function causes the program to terminate, no matter where it is in the listing.

-

tem when the program exits. (This value is useful in batch files, where you can use the

ERRORLEVEL value to query the return value provided by

for a successful termination; other numbers indicate errors.)

Loops and Decisions

The statement lets you do something if a condition is true. If it i

statement comes in. It consists of an statement, followed by a

statement or block of statements, followed by the keyword , followed by another state-

Syntax of the statement.

IF example, with an added to the :

If the test expression in the

prints the other.

The operation of the

Operation of the statement.

Loops and Decisions

Our next example shows an statement embedded in a loop. It also introduces

a new library function: . This program, CHCOUNT, counts the number of words and the

number of characters in a phrase typed in by the user.

So far used only and for input. That approach requires that the user always press

the Enter key to inform the program that the input is complete. This is true even for single

characters: The user must type the character, then press Enter. However, as in the present

example, a program often needs to process each character typed by the user without waiting for

an Enter. The library function performs this service. It returns each character as soon

as typed. It takes no arguments, and requires the CONIO.H header file. In CHCOUNT the value

of the character returned from is assigned to . (The function echoes the

character to the screen. why an at the end of . Another function,

, is similar to but does screen.)

The statement causes the word count to be incremented if the character is

a space, and the character count to be incremented if the character is anything but a

 a space is assumed to count as a character. (Note that this pro-

gram is fairly naïve; it will be fooled by multiple spaces between words.)

CHCOUNT:

The test expression in the statement checks to see if is the character, which is

the character received from the keyboard when the Enter key is pressed. If so, the loop and the

program terminate.

The CHCOUNT program can be rewritten to save a line of code and demonstrate some important

points about assignment expressions and precedence. The result is a construction that looks

rather peculiar but is commonly used in C++ (and in C).

CHCNT

The value returned by is assigned to as before, but this entire assignment expres-

sion has been moved inside the test expression for . The assignment expression is com-

pared with to see whether the loop should terminate. This works because the entire

assignment expression takes on the value used in the assignment. That is, if returns

, then not only does take on the value , but the expression

Loops and Decisions

also takes on the value . This is then compared with .

The fact that assignment expressions have a value is also used in statements such as

This is perfectly legal in C++. First,

which is assigned to . Then the expression

assigned to .

The parentheses around the assignment expression in

are necessary because the assignment operator has a lower precedence than the relational

operator . Without the parentheses the expression would be evaluated as

which would assign a true or false value to (not what we want).

The statement in CHCNT

expression (checking); it also gets a character from the keyboard

and assigns it to also not easy to unravel the first time you see it.

-mode MS-DOS

landscape and discovered castles, sorcerers, treasure, and so on, using text not pictures for

input and output. The next program, ADIFELSE, models a small part of such an adventure game.

south, east, or west, while the program keeps track of where you are and reports your position,

no matter where you go; the moor stretches almost limitlessly in all directions, as shown in

try to provide a little more excitement to this game later on.

ADIFELSE:

You can press the Enter key to exit the program.

This program may not cause a sensation in the video arcades, but it does demonstrate one way

to handle multiple branches. It uses an statement nested inside an statement,

which is nested inside another statement, which is nested inside yet another

statement. If the first test condition is false, the second one is examined, and so on

until all four have been checked. If any one proves true, the appropriate action is taken

changing the x or y coordinate and the program exits from all the nested decisions. Such a

nested group of statements is called a decision tree.

Loops and Decisions

The barren moor.

statements: You can inadvertently match an

with the wrong . BADELSE provides an example:

. Press Enter following each value you type in;

the three values will be assigned to , , and .

Variable different,

so the first test expression is false, and you would expect the to be invoked, printing a

and b are different. But in fact nothing is printed. Why not? Because the is matched with

the wrong . The indentation would lead you to believe that the is matched with the first

, but in fact it goes with the second is matched with the last

.

We changed the indentation and also the phrase printed by the body. Now if you enter ,

, , nothing will be printed. But entering , , will cause the output

If you really want to pair an with an earlier , you can use braces around the inner :

Here the is paired with the first , as the indentation indicates. The braces make the

within them invisible to the following .

Loops and Decisions

The nested statements in the ADIFELSE program look clumsy and can be hard for

humans

another approach to writing the same statements. We need only reformat the program, obtain-

ing the next example, ADELSEIF.

The compiler sees this as identical to ADIFELSE s so they directly

follow the s. The result looks almost like a new keyword: . The program goes

down the ladder of s until one of the test expressions is true. It then executes the fol-

lowing statement and exits from the ladder. This format is clearer and easier to follow than the

approach.

If you have a large decision tree, and all the decisions depend on the value of the same vari-

able, you will probably want to consider a statement instead of a ladder of

or alled PLATTERS that will appeal to nostal-

gia buffs:

This program prints one of three possible messages, depending on whether the user inputs the

number , , or . As old-timers may recall, long-playing records (LPs) contained many

The keyword is followed by a switch variable in parentheses.

Braces then delimit a number of statements. Each keyword is followed by a

constant, which is not in parentheses but is followed by a colon.

the syntax of the statement.

Loops and Decisions

Syntax of the statement.

Before entering the switch, the program should assign a value to the switch variable. This

value will usually match a constant in one of the statements. When this is the case (pun

intended!), the statements immediately following the keyword will be executed, until a

is reached.

PLATTER

PLATTERS has a statement at the end of each section. The keyword causes the

entire statement to exit. Control goes to the first statement following the end of the

construction, which in PLATTERS ;

 to the statements for the next , which

constants, control passes to

the end of the switch without doing anything. The operation of the statement is shown

Operation of the statement.

Loops and Decisions

The PLATTERS example shows a statement based on a variable of type . You can also

use type ADELSEIF program rewritten as ADSWITCH:

A character variable is used as the switch variable, and character constants , , and

so on are used as the case constants. (Note that you can use integers and characters as switch

-point numbers.)

Since they are so short, the statements following each keyword have been written on one

to print an exit mes-

sage when Enter is pressed.

In the ADSWITCH program, where you expect to see the last at the bottom of the

construction, you instead see the keyword . This keyword gives the construc-

constants. Here we use it to print if the user types an unknown character. No

is necessary after anyway.

A statement is a common approach to analyzing input entered by the user. Each of the

possible characters is represented by a .

statement in all

you need it. A construction such as

alerts the programmer (or the user) that something has gone wrong in the operation of the pro-

statement, but you

should, especially in serious programs.

When do you use a series of (or) statements, and when do you use a

statement? In an construction you can use a series of expressions that involve

unrelated variables and are as complex as you like. For example:

In a statement, however, all the branches are selected by the same variable; the only

The case constant must be an integer or character constant, like or , or an expression that

evaluates to a constant, like .

When these conditions are met, the statement is very clean easy to write and to

understand. It should be used whenever possible, especially when the decision tree has more

than a few possibilities.

Here -

statement that gives the variable the value of or the

value of , depending on which is smaller:

Loops and Decisions

This sort of construction is so common that the designers of C++ (actually the designers of C,

long ago) invented a compressed way to express it: the conditional operator. This operator

y such operator in C++;

fragment, using a conditional operator:

The part of this statement to the right of the equal sign is called the conditional expression:

The question mark and the colon make up the conditional operator. The expression before the

question mark

is the test expression. It and and are the three operands.

If the test expression is true, the entire conditional expression takes on the value of the operand

following the question mark: in this example. If the test expression is false, the condi-

tional expression takes on the value of the operand following the colon: . The parentheses

the con operation.

Syntax of the conditional operator.

Operation of the conditional operator.

The conditional expression can be assigned to another variable or used anywhere a value can

.

of a variable . (The absolute value of a number is the number with any negative sign removed,

If , a positive number. If

expression remains . The result is the absolute value of , which is assigned to .

CONDI.CPP, that uses the conditional operator to print an every eight spaces

in a line of text. You might use this to see where the tab stops are on your screen.

Loops and Decisions

Some of the right side of the output is lost because of the page width, but you can probably

imagine it:

As

to become false only when

has the value (the space character) when is not when

it is.

You may think this is terse, but we could have combined the two statements in the loop body

into one, eliminating the variable:

Hotshot C++ (and C) programmers love this sort of thing getting a lot of bang from very lit-

An statement and a few extra program lines will accomplish the same thing.

So far seen two families of operators (besides the oddball conditional operator). First are

the arithmetic operators , , , , and . Second are the relational operators , , , , ,

and .

logical operators. These operators allow you

to logically combine Boolean variables (that is, variables of type , with true or false val-

ues). For example, today is a weekday

Another Boolean expression is Maria took the car. We can connect these expressions logically:

e the bus. The logical con-

nection here is the word and, which provides a true or false value to the combination of the

two phrases. Only if they are both true will I have to take the bus.

ADVENAND, that uses a logical operator to spruce up the adventure game from the ADSWITCH

The key to this program is the statement

The test expression will be true only if is and is logical operator joins the

two relational expressions to achieve this result. (A relational expression is one that uses a

relational operator.)

Loops and Decisions

Notice that parentheses are not necessary around the relational expressions.

This is because the relational operators have higher precedence than the logical operators.

There are three logical operators in C++:

Operator Effect

Logical

Logical

Logical

There is no logical (exclusive) operator in C++.

look at examples of the and operators.

Suppose in the adventure game you decide there will be dragons if the user goes too far east or

ADVENOR, that uses the logical operator to implement this

frightening impediment to ADVENAND program.

The expression

is true whenever either

player is too far east). Again, the operator has lower precedence than the relational opera-

tors and , so no parentheses are needed in this expression.

The logical operator is a unary operator that is, it takes only one operand. (Almost all

binary operators; they take two operands. The conditional

operator is the only ternary operator in C++.) The effect of the is that the logical value of its

operand is reversed: If something is true, makes it false; if it is false, makes it true. (It

would be nice if life were so easily manipulated.)

For example, is true if is true if

situation you could use the relational not equals operator, , to achieve the same effect.)

We may have given you the impression that for an expression to have a true/false value, it must

involve a relational operator. But in fact, every integer expression has a true/false value, even if

it is only a single variable. The expression is true whenever

Applying the operator to this situation, we can see that the is true whenever

reverses the truth value of .

-

room on all the locations where both and

mushrooms, when consumed by the player, confer magical powers.) The remainder when is

the mushroom locations, we can write

Loops and Decisions

However, remembering that e

operators, you can use the operator to provide a more concise format.

This has exactly the same effect.

said that the logical operators and have lower precedence than the relational oper-

ators. Why then do we need parentheses around and ? Because, even though it is a log-

ical operator, is a unary operator, which has higher precedence than relational operators.

higher on the list have higher precedence than those lower down. Operators with higher prece-

dence are evaluated before those with lower precedence. Operators on the same row have equal

precedence. You can force an expression to be evaluated first by placing parentheses around it.

Keywords

Operator type Operators Precedence

Unary , , , , Highest

Arithmetic Multiplicative , ,

 Additive ,

Relational Inequality , , ,

 Equality ,

Logical And

 Or

Conditional

Assignment , , , , , Lowest

We should note that if there is any possibility of confusion in a relational expression that

involves multiple operators, you should use parentheses whether they are needed or not. They

made a mistake with precedence. Also, they make it clear to anyone reading the listing what

you intended.

, used in

statements, but it can be used other places as well. Another statement, , is

used only in loops, and a third,

The statement causes an exit from a loop, just as it does from a statement. The

next statement after the

shows the operation of the statement.

Operation of the statement.

To demonstrate SHOWPRIM, that displays the distribution of prime

numbers in graphical form:

Loops and Decisions

- -

white; if not prime, colored gray.

shown as white to avoid complicating the program. Think of the columns across the top as

-numbered

column

mathematics will be very excited if you find a pattern that allows you to predict whether any

given number is prime.

Output of SHOWPRIM program.

When the inner loop determines that a number is not prime, it sets the character to

, and then executes

entire program, as in the PRIME example, since we have a whole series of numbers to work on.)

Notice that only takes you out of the innermost loop. This is true no matter what con-

structions are nested inside each other: only takes you out of the construction in which

e a within a loop, a in the would only take

you out of the , not out of the loop.

The last statement prints the graphics character, and then the loop continues, testing the

next number for primeness.

This program uses two characters from the extended ASCII character set, the characters repre-

-colored block (white on a black-and-white -

sents a gray block.

The SHOWPRIM example uses in the last line to keep the DOS prompt from scrolling

the screen up when the program terminates. It freezes the screen until you press a key.

We use type for the character variables in SHOWPRIM

Type

The statement takes you out of the bottom of a loop. Sometimes, however, you want to

go back to the top of the loop when something unexpected happens. Executing has

this effect. (Strictly speaking, the takes you to the closing brace of the loop body,

.

DIVDO example. This program, which we saw earlier in this chapter,

does division, but it has a fatal flaw: If the user inputs as the divisor, the program undergoes

catastrophic failure and terminates with the runtime error message Divide Error. The revised

version of the program, DIVDO

Loops and Decisions

Operation of the statement.

If the user inputs for the divisor, the program prints an error message and, using ,

A statement in this situation would cause an exit from the loop and the program, an

unnecessarily harsh response.

loop a little more compact. The is on the same

line as the opening brace, and the is on the same line as the closing brace.

statement here for the sake of completeness

s

almost never any need to use , as is demonstrated by its absence from the program exam-

ples in this book.

With that lecture out of the way, You insert a label in your code at the

desired destination for the . The label is always terminated by a colon. The keyword ,

followed by this label name, then takes you to the label. The following code fragment demon-

strates this approach.

than the other, and so on. The result is a logical or Boolean (type) value, which is true or

false. False is indicated by -zero number.

There are three kinds of loops in C++. The loop is most often used when you know in

advance how many times you want to execute the loop. The loop and loops are used

when the condition causing the loop to terminate arises within the loop, with the loop

not necessarily executing at all, and the loop always executing at least once.

A loop body can be a single statement or a block of multiple statements delimited by braces. A

variable defined within a block is visible only within that block.

There are four kinds of decision-making statements. The statement does something if a test

expression is true. The statement does one thing if the test expression is true, and

another thing if construction is a way of rewriting a ladder of nested

statements to make it more readable. The statement branches to multiple

sections of code, depending on the value of a single variable. The conditional operator simpli-

The logical and operators combine two Boolean expressions to yield another one, and

the logical operator changes a Boolean value from true to false, or from false to true.

