Structures

Assist. Prof. Dr.
Ahmed Hashim Mohammed

IN THIS CHAPTER

o Structures

o Enumerations

CHAPTER

4

Structures

We’ve seen variables of simple data types, such as float, char, and int. Variables of such
types represent one item of information: a height, an amount, a count, and so on. But just as
groceries are organized into bags, employees into departments, and words into sentences, it’s
often convenient to organize simple variables into more complex entities. The C++ construc-
tion called the structure is one way to do this.

The first part of this chapter is devoted to structures. In the second part we’ll look at a related

topic: enumerations.

Structures

A structure is a collection of simple variables. The variables in a structure can be of different
types: Some can be int, some can be float, and so on. (This is unlike the array, which we’ll

meet later, in which all the variables must be the same type.) The data items in a structure are
called the members of the structure.

In books on C programming, structures are often considered an advanced feature and are intro-
duced toward the end of the book. However, for C++ programmers, structures are one of the
two important building blocks in the understanding of objects and classes. In fact, the syntax of

a structure is almost identical to that of a class. A structure (as typically used) is a collection of
data, while a class is a collection of both data and functions. So by learning about structures
we’ll be paving the way for an understanding of classes and objects. Structures in C++ (and C)
serve a similar purpose to records in some other languages such as Pascal.

A Simple Structure

Let’s start off with a structure that contains three variables: two integers and a floating-point
number. This structure represents an item in a widget company’s parts inventory. The structure
is a kind of blueprint specifying what information is necessary for a single part. The company
makes several kinds of widgets, so the widget model number is the first member of the struc-
ture. The number of the part itself is the next member, and the final member is the part’s cost.
(Those of you who consider part numbers unexciting need to open your eyes to the romance of
commerce.)

The program PARTS defines the structure part, defines a structure variable of that type called
partl, assigns values to its members, and then displays these values.

// parts.cpp

// uses parts inventory to demonstrate structures
#include <iostream>

using namespace std;

Chapter 4

LI17717777777777777777177777777777777777777777717717777777777777

struct part //declare a structure
{
int modelnumber; //ID number of widget
int partnumber; //ID number of widget part
float cost; //cost of part
1

[11777/777777777/7/777/7/77//
int main(Q)
{

part partl; //define a structure variable

partl.modelnumber = 6244; //give values to structure members
partl.partnumber = 373;
partl.cost = 217.55F;
//display structure members
cout << “Model “ << partl.modelnumber;

cout << “, part “ << partl.partnumber;
cout << “, costs $” << partl.cost << endl;
return 0;

}

The program’s output looks like this:
Model 6244, part 373, costs $217.55

The PARTS program has three main aspects: defining the structure, defining a structure variable,
and accessing the members of the structure. Let’s look at each of these.

Defining the Structure

The structure definition tells how the structure is organized: It specifies what members the
structure will have. Here it is:

struct part
{
int modelnumber;
int partnumber;
float cost;

1

Syntax of the Structure Definition

The keyword struct introduces the structure definition. Next comes the structure name or tag,
which is part. The declarations of the structure members—modelnumber, partnumber, and
cost—are enclosed in braces. A semicolon follows the closing brace, terminating the entire

SRANLONYLS

Structures

structure. Note that this use of the semicolon for structures is unlike the usage for a block of
code. As we’ve seen, blocks of code, which are used in loops, decisions, and functions, are also
delimited by braces. However, they don’t use a semicolon following the final brace. Figure 4.1
shows the syntax of the structure declaration.

Keyword “struct”

Structure name or “tag”

struct part
— {

int modelnumber;
Braces delimit

structure members int partnumber; Structure members

float cost;

— 1

Semicolon terminates definition

FIGURE 4.1
Syntax of the structure definition.

Use of the Structure Definition

The structure definition definition serves only as a blueprint for the creation of variables of type
part. It does not itself create any structure variables; that is, it does not set aside any space in
memory or even name any variables. This is unlike the definition of a simple variable, which
does set aside memory. A structure definition is merely a specification for how structure vari-
ables will look when they are defined. This is shown in Figure 4.2.

It’s not accidental that this description sounds like the distinction we noted between classes
and objects in Chapter 1, “The Big Picture.” As we’ll see, an object has the same relationship
to its class that a variable of a structure type has to the structure definition.

Defining a Structure Variable
The first statement in main()
part partl;

defines a variable, called partl, of type structure part. This definition reserves space in
memory for partl. How much space? Enough to hold all the members of partl—namely
modeTnumber, partnumber, and cost. In this case there will be 4 bytes for each of the two ints
(assuming a 32-bit system), and 4 bytes for the float. Figure 4.3 shows how partl looks in
memory. (The figure shows 2-byte integers.)

Chapter 4

Structure definition for Foo

Variables of type Foo

FIGURE 4.2

Structures and structure variables.

In some ways we can think of the part structure as the specification for a new data type. This
will become more clear as we go along, but notice that the format for defining a structure vari-
able is the same as that for defining a basic built-in data type such as int:

part partl;
int varl;

This similarity is not accidental. One of the aims of C++ is to make the syntax and the opera-
tion of user-defined data types as similar as possible to that of built-in data types. (In C you
need to include the keyword struct in structure definitions, as in struct part partl;. In
C++ the keyword is not necessary.)

SIUNLONYLS

Structures

struct part
{
int modelnumber;
int partnumber;
float cost;
27

part parti;

FIGURE 4.3
Structure members in memory.

Accessing StructureMembers

Once a structure variable has been defined, its members can be accessed using something
called the dot operator. Here’s how the first member is given a value:

partl.modeTnumber = 6244;

The structure member is written in three parts: the name of the structure variable (partl); the
dot operator, which consists of a period (.); and the member name (modeTnumber). This means
“the modeTnumber member of partl.” The real name of the dot operator is member access
operator, but of course no one wants to use such a lengthy term.

Remember that the first component of an expression involving the dot operator is the name of
the specific structure variable (partl in this case), not the name of the structure definition
(part). The variable name must be used to distinguish one variable from another, such as
partl, part2, and so on, as shown in Figure 4.4.

6 Chapter 4
g
P
=
part2.modelnumber
FIGURE 4.4

The dot operator.

Structure members are treated just like other variables. In the statement partl.modelnumber
6244;, the member is given the value 6244 using a normal assignment operator. The program
also shows members used in cout statements such as

cout << “\nModel “ << partl.modelnumber;

These statements output the values of the structure members.

Other StructureFeatures

Structures are surprisingly versatile. Let’s look at some additional features of structure syntax
and usage.

SRANLONYLS

Structures

Initializing Structure Members

The next example shows how structure members can be initialized when the structure variable
is defined. It also demonstrates that you can have more than one variable of a given structure
type (we hope you suspected this all along).

Here’s the listing for PARTINIT:

// partinit.cpp

// shows initialization of structure variables
#include <iostream>

using namespace std;

IT1717717777777777177177177777771777771777777777717777777777777

struct part //specify a structure
{
int modelnumber; //ID number of widget
int partnumber; //ID number of widget part
float cost; //cost of part
1

I11717777777777777177177177777771777777777777777717777777777777

int main(Q)

{ //initialize variable

part partl = { 6244, 373, 217.55F };

part part2; //define variable
//display first variable

cout << “Model *“ << partl.modelnumber;

cout << “, part “ << partl.partnumber;

cout << “, costs $” << partl.cost << endl;

part2 = partl; //assign first variable to second
//display second variable

cout << “Model *“ << part2.modelnumber;

cout << “, part “ << part2.partnumber;

cout << “, costs $” << part2.cost << endl;

return O;

}

This program defines two variables of type part: partl and part2. It initializes partl, prints
out the values of its members, assigns partl to part2, and prints out its members.

Here’s the output:

Model 6244, part 373, costs $217.55
Model 6244, part 373, costs $217.55

Not surprisingly, the same output is repeated since one variable is made equal to the other.
The partl structure variable’s members are initialized when the variable is defined:

part partl = { 6244, 373, 217.55 };

Chapter 4

The values to be assigned to the structure members are surrounded by braces and separated by
commas. The first value in the list is assigned to the first member, the second to the second
member, and so on.

Structure Variables in Assignment Statements
As can be seen in PARTINIT, one structure variable can be assigned to another:

part2 = partl;

The value of each member of partl is assigned to the corresponding member of part2. Since
a large structure can have dozens of members, such an assignment statement can require the
computer to do a considerable amount of work.

Note that one structure variable can be assigned to another only when they are of the same
structure type. If you try to assign a variable of one structure type to a variable of another type,
the compiler will complain.

A Measurement Example

Let’s see how a structure can be used to group a different kind of information. If you’ve ever
looked at an architectural drawing, you know that (at least in the United States) distances are
measured in feet and inches. (As you probably know, there are 12 inches in a foot.) The length
of a living room, for example, might be given as 15’—8”, meaning 15 feet plus 8 inches. The
hyphen isn’t a negative sign; it merely separates the feet from the inches. This is part of the
English system of measurement. (We’ll make no judgment here on the merits of English versus
metric.) Figure 4.5 shows typical length measurements in the English system.

Suppose you want to create a drawing or architectural program that uses the English system. It
will be convenient to store distances as two numbers, representing feet and inches. The next
example, ENGLSTRC, gives an idea of how this could be done using a structure. This program
will show how two measurements of type Distance can be added together.

// englstrc.cpp
// demonstrates structures using English measurements
#include <iostream>
using namespace std;
111777/7777/7/7/7777///7/7///
struct Distance //English distance

{

int feet;

float inches;

1
(111777777 7777777777777777777777777/7777777777/7777/77/77/7/77/7

SIUNIONYLS

