

Structures

, , and . Variables of such

types represent one item of information: a height, an amount, a count, and so on. But just as

groceries are organized into bags, employees into departments, and word

often convenient to organize simple variables into more complex entities. The C++ construc-

tion called the structure is one way to do this.

related

topic: enumerations.

A structure is a collection of simple variables. The variables in a structure can be of different

types: Some can be , some can be

meet later, in which all the variables must be the same type.) The data items in a structure are

called the members of the structure.

In books on C programming, structures are often considered an advanced feature and are intro-

duced toward the end of the book. However, for C++ programmers, structures are one of the

two important building blocks in the understanding of objects and classes. In fact, the syntax of

a structure is almost identical to that of a class. A structure (as typically used) is a collection of

data, while a class is a collection of both data and functions. So by learning about structures

serve a similar purpose to records in some other languages such as Pascal.

-point

is a kind of blueprint specifying what information is necessary for a single part. The company

makes several kinds of widgets, so the widget model number is the first member of the struc-

(Those of you who consider part numbers unexciting need to open your eyes to the romance of

commerce.)

The program PARTS defines the structure , defines a structure variable of that type called

, assigns values to its members, and then displays these values.

The PARTS program has three main aspects: defining the structure, defining a structure variable,

of these.

The structure definition tells how the structure is organized: It specifies what members the

structure will have. Here it is:

The keyword introduces the structure definition. Next comes the structure name or tag,

which is . The declarations of the structure members , , and

are enclosed in braces. A semicolon follows the closing brace, terminating the entire

Structures

structure. Note that this use of the semicolon for structures is unlike the usage for a block of

shows the syntax of the structure declaration.

Braces delimit

structure members
Structure members

Semicolon terminates definition

Syntax of the structure definition.

The structure definition definition serves only as a blueprint for the creation of variables of type

. It does not itself create any structure variables; that is, it does not set aside any space in

memory or even name any variables. This is unlike the definition of a simple variable, which

does set aside memory. A structure definition is merely a specification for how structure vari-

to its class that a variable of a structure type has to the structure definition.

The first statement in

defines a variable, called , of type structure . This definition reserves space in

memory for . How much space? Enough to hold all the members of namely

, , and s

-bit looks in

-byte integers.)

Structure definition for Foo

Foo Foo Foo

Variables of type Foo

Structures and structure variables.

In some ways we can think of the structure as the specification for a new data type. This

will become more clear as we go along, but notice that the format for defining a structure vari-

able is the same as that for defining a basic built-in data type such as :

This similarity is not accidental. One of the aims of C++ is to make the syntax and the opera-

tion of user-defined data types as similar as possible to that of built-in data types. (In C you

need to include the keyword in structure definitions, as in . In

C++ the keyword is not necessary.)

Structures

Structure members in memory.

Once a structure variable has been defined, its members can be accessed using something

called the dot operator

The structure member is written in three parts: the name of the structure variable (); the

dot operator, which consists of a period (); and the member name (). This means

member of member access

operator, but of course no one wants to use such a lengthy term.

Remember that the first component of an expression involving the dot operator is the name of

the specific structure variable (in this case), not the name of the structure definition

(). The variable name must be used to distinguish one variable from another, such as

,

The dot operator.

Structure members are treated just like other variables. In the statement

also shows members used in statements such as

These statements output the values of the structure members.

and usage.

Structures

The next example shows how structure members can be initialized when the structure variable

is defined. It also demonstrates that you can have more than one variable of a given structure

type (we hope you suspected this all along).

PARTINIT:

This program defines two variables of type : and . It initializes , prints

out the values of its members, assigns to , and prints out its members.

Not surprisingly, the same output is repeated since one variable is made equal to the other.

The

The values to be assigned to the structure members are surrounded by braces and separated by

commas. The first value in the list is assigned to the first member, the second to the second

member, and so on.

As can be seen in PARTINIT, one structure variable can be assigned to another:

The value of each member of is assigned to the corresponding member of . Since

a large structure can have dozens of members, such an assignment statement can require the

computer to do a considerable amount of work.

Note that one structure variable can be assigned to another only when they are of the same

structure type. If you try to assign a variable of one structure type to a variable of another type,

the compiler will complain.

looked at an architectural drawing, you know that (at least in the United States) distances are

feet from the inches. This is part of the

Suppose you want to create a drawing or architectural program that uses the English system. It

will be convenient to store distances as two numbers, representing feet and inches. The next

example, ENGLSTRC, gives an idea of how this could be done using a structure. This program

will show how two measurements of type can be added together.

