Chapter 4

The values to be assigned to the structure members are surrounded by braces and separated by
commas. The first value in the list is assigned to the first member, the second to the second
member, and so on.

Structure Variables in Assignment Statements
As can be seen in PARTINIT, one structure variable can be assigned to another:

part2 = partl;

The value of each member of partl is assigned to the corresponding member of part2. Since
a large structure can have dozens of members, such an assignment statement can require the
computer to do a considerable amount of work.

Note that one structure variable can be assigned to another only when they are of the same
structure type. If you try to assign a variable of one structure type to a variable of another type,
the compiler will complain.

A Measurement Example

Let’s see how a structure can be used to group a different kind of information. If you’ve ever
looked at an architectural drawing, you know that (at least in the United States) distances are
measured in feet and inches. (As you probably know, there are 12 inches in a foot.) The length
of a living room, for example, might be given as 15’—8”, meaning 15 feet plus 8 inches. The
hyphen isn’t a negative sign; it merely separates the feet from the inches. This is part of the
English system of measurement. (We’ll make no judgment here on the merits of English versus
metric.) Figure 4.5 shows typical length measurements in the English system.

Suppose you want to create a drawing or architectural program that uses the English system. It
will be convenient to store distances as two numbers, representing feet and inches. The next
example, ENGLSTRC, gives an idea of how this could be done using a structure. This program
will show how two measurements of type Distance can be added together.

// englstrc.cpp
// demonstrates structures using English measurements
#include <iostream>
using namespace std;
111777/7777/7/7/7777///7/7///
struct Distance //English distance

{

int feet;

float inches;

1
(111777777 7777777777777777777777777/7777777777/7777/77/77/7/77/7

SIUNIONYLS

Structures

int mainQ
{
Distance dl, d3; //define two Tengths
Distance d2 = { 11, 6.25 }; //define & initialize one length

//get length d1 from user
cout << “\nEnter feet: “; cin >> dl.feet;

cout << “Enter inches: “; cin >> dl.inches;

//add lengths dl1 and d2 to get d3
d3.inches = dl.inches + d2.inches; //add the inches

d3.feet = 0; //(for possible carry)
if(d3.inches >= 12.0) //if total exceeds 12.0,
{ //then decrease inches by 12.0
d3.inches -= 12.0; //and
d3.feet++; //increase feet by 1
3

d3.feet += dl.feet + d2.feet; //add the feet

//display all Tengths

cout << dl.feet << “\’-" << dl.inches << “\” + “;
cout << d2.feet << “\’-" << d2.inches << “\” = “;
cout << d3.feet << “\’-" << d3.inches << “\"\n”;
return 0;

}

— 10'-6.75"

Dining room

12'-0.5"

FIGURE 4.5

Measurements in the English system.

10 Chapter 4

Here the structure bistance has two members: feet and inches. The inches variable may
have a fractional part, so we’ll use type float for it. Feet are always integers, so we’ll use type
int for them.

We define two such distances, d1 and d3, without initializing them, while we initialize another,
d2,to 11— 6.25". The program asks the user to enter a distance in feet and inches, and assigns
this distance to d1. (The inches value should be smaller than 12.0.) It then adds the distance d1
to d2, obtaining the total distance d3. Finally the program displays the two initial distances and
the newly calculated total distance. Here’s some output:

Enter feet: 10
Enter inches: 6.75
10°-6.75" + 11’-6.25" = 22’-1"

Notice that we can’t add the two distances with a program statement like
d3 = dl + d2; // can’t do this in ENGLSTRC

Why not? Because there is no routine built into C++ that knows how to add variables of type
Distance. The + operator works with built-in types like f1oat, but not with types we define
ourselves, like bistance. (However, one of the benefits of using classes, as we’ll see in
Chapter 8, “Operator Overloading,” is the ability to add and perform other operations on user-
defined data types.)

Structures Within Structures

You can nest structures within other structures. Here’s a variation on the ENGLSTRC program
that shows how this looks. In this program we want to create a data structure that stores the
dimensions of a typical room: its length and width. Since we’re working with English dis-
tances, we’ll use two variables of type Distance as the length and width variables.

struct Room
{
Distance length;
Distance width;

}

Here’s a program, ENGLAREA, that uses the Room structure to represent a room.

// englarea.cpp

// demonstrates nested structures

#include <iostream>

using namespace std;
I177/7//77/7777///77
struct Distance //English distance

{
int feet;

SIUNIONYLS

Structures 11

float inches;

1
I111777/777771/77/
struct Room //rectangular area

{

Distance Tength; //length of rectangle

Distance width; //width of rectangle

1

I11717777777777777177177177777771777771777777777717777777777777

int main(Q)

{
Room dining; //define a room
dining.length.feet = 13; //assign values to room

dining.length.inches = 6.5;
dining.width.feet = 10;
dining.width.inches = 0.0;

//convert length & width
dining.length.feet + dining.length.inches/12;
dining.width.feet + dining.width.inches/12;
//find area and display it

<< 1 *w

float 1
float w

cout << “Dining room area is

<< “ square feet\n” ;
return 0;

3
This program defines a single variable—dining—of type Room, in the line
Room dining; // variable dining of type Room
It then assigns values to the various members of this structure.
Accessing Nested Structure Members

Because one structure is nested inside another, we must apply the dot operator twice to access
the structure members.

dining.length.feet = 13;

In this statement, dining is the name of the structure variable, as before; Tength is the name of
a member in the outer structure (Room); and feet is the name of a member of the inner struc-
ture (Distance). The statement means “take the feet member of the Tength member of the
variable dining and assign it the value 13.” Figure 4.6 shows how this works.

12 Chapter 4

dining
S

dining.length.feet = 13;

FIGURE 4.6

Dot operator and nested structures.

Once values have been assigned to members of dining, the program calculates the floor area
of the room, as shown in Figure 4.7.

To find the area, the program converts the length and width from variables of type Distance to
variables of type float, 1, and w, representing distances in feet. The values of 1 and w are
found by adding the feet member of Distance to the inches member divided by 12. The feet
member is converted to type float automatically before the addition is performed, and the
result is type float. The 1 and w variables are then multiplied together to obtain thearea.

SIUNIONYLS

Structures 13

“F
=
€
S

r|

feet =

feet
width

|-=

FIGURE 4.7

Area in feet and inches.

User-Defined Type Conversions

Note that the program converts two distances of type Distance to two distances of type float:
the variables 1 and w. In effect it also converts the room’s area, which is stored as a structure of
type Room (which is defined as two structures of type Distance), to a single floating-point
number representing the area in square feet. Here’s the output:

Dining room area is 135.416672 square feet
Converting a value of one type to a value of another is an important aspect of programs that

employ user-defined data types.

Initializing Nested Structures
How do you initialize a structure variable that itself contains structures? The following state-
ment initializes the variable dining to the same values it is given in the ENGLAREA program:

Room dining = { {13, 6.5}, {10, 0.0} };

Each structure of type Distance, which is embedded in Room, is initialized separately.
Remember that this involves surrounding the values with braces and separating them with
commas. The first Distance is initialized to

{13, 6.5}

14

Chapter 4

and the second to
{10, 0.0}

These two Distance values are then used to initialize the Room variable; again, they
are surrounded with braces and separated by commas.

Depth of Nesting
In theory, structures can be nested to any depth. In a program that designs apartment
buildings, you might find yourself with statements like this one:

apartmentl.laundry_room.washing_machine.width.feet

Structures and Classes

We must confess to having misled you slightly on the capabilities of structures. It’s true that
structures are usually used to hold data only, and classes are used to hold both data and func-
tions. However, in C++, structures can in fact hold both data and functions. (In C they can hold
only data.) The syntactical distinction between structures and classes in C++ is minimal, so
they can in theory be used almost interchangeably. But most C++ programmers use structures
as we have in this chapter, exclusively for data. Classes are usually used to hold both data and
functions, as we’ll see in Chapter 6, “Objects and Classes.”

Enumerations

As we’ve seen, structures can be looked at as a way to provide user-defined data types. A dif-

ferent approach to defining your own data type is the enumeration. This feature of C++ is less
crucial than structures. You can write perfectly good object-oriented programs in C++ without
knowing anything about enumerations. However, they are very much in the spirit of C++, in

that, by allowing you to define your own data types, they can simplify and clarify your pro-
gramming.

Days of the Week

Enumerated types work when you know in advance a finite (usually short) list of values that a
data type can take on. Here’s an example program, DAYENUM, that uses an enumeration for the
days of the week:

// dayenum.cpp
// demonstrates enum types
#include <iostream>
using namespace std;
//specify enum type
enum days_of_week { Sun, Mon, Tue, wed, Thu, Fri, Sat };

int mainQ)
{
days_of_week dayl, day2; //define variables

Structures

//of type days_of_week

15

Chapter 4

16
dayl = Mon; //give values to
day2 = Thu; //variables
int diff = day2 - dayl; //can do integer arithmetic
cout << “Days between = “ << diff << endl;
if(dayl < day2) //can do comparisons
cout << “dayl comes before day2\n”;
return 0;
3

An enum declaration defines the set of all names that will be permissible values of the type.
These permissible values are called enumerators. The enum type days_of_week has seven
enumerators: Sun, Mon, Tue, and so on, up to Sat. Figure 4.8 shows the syntax of an enum
declaration.

Keyword e num
Semicolon terminates
rmmm statement W
enum days_of_week{Sun,Mon,Tues, Hed Thu,Fri,Sat};
\-_\-\\‘-\\- //
hslnfmm
separated by commas
List delimited by braces

FIGURE 4.8

Syntax of enum specifier.

An enumeration is a list of all possible values. This is unlike the specification of an int, for
example, which is given in terms of a range of values. In an enum you must give a specific
name to every possible value. Figure 4.9 shows the difference between anint and an enum.

Once you’ve declared the enum type days_of_week as shown, you can define variables of this
type. DAYENUM has two such variables, dayl and day2, defined in the statement

days_of_week dayl, day2;
(In C you must use the keyword enum before the type name, as in
enum days_of_week dayl, day2;

In C++ this isn’t necessary.)

SIUNLONYLS

Structures 17

enum type

A small number of values
are individually named and
are refemed to by name,

Alarge number of values
are not named and are
referred to by value.

(Plus others too numerous to depict)

FIGURE 4.9

Usage of ints and enums.

Variables of an enumerated type, like dayl and day2, can be given any of the values listed in
the enum declaration. In the example we give them the values Mon and Thu. You can’t use values
that weren’t listed in the declaration. Such statements as

dayl = halloween;
are illegal.

You can use the standard arithmetic operators on enum types. In the program we subtract two
values. You can also use the comparison operators, as we show. Here’s the program’s output:

Days between = 3
dayl comes before day?2

Chapter 4

18

The use of arithmetic and relational operators doesn’t make much sense with some enum types.

For example, if you have the declaration
enum pets { cat, dog, hamster, canary, ocelot };
then it may not be clear what expressions like dog + canary or (cat < hamster) mean.

Enumerations are treated internally as integers. This explains why you can perform arithmetic
and relational operations on them. Ordinarily the first name in the list is given the value 0, the
next name is given the value 1, and so on. In the DAYENUM example, the values Sun through
Sat are stored as the integer values 0-6.

Arithmetic operations on enum types take place on the integer values. However, although the
compiler knows that your enum variables are really integers, you must be careful of trying to
take advantage of this fact. If you say

dayl = 5;

the compiler will issue a warning (although it will compile). It’s better to forget—whenever
possible—that enums are really integers.

One Thing or Another

Our next example counts the words in a phrase typed in by the user. Unlike the earlier
CHCOUNT example, however, it doesn’t simply count spaces to determine the number of words.
Instead it counts the places where a string of nonspace characters changes to a space, as shown
in Figure 4.10.

isWord flag
true false true false true false true fakse
7
N ame Rla|nlk Sleir|ija|l numberfr:
count 1 count 2 count 3 count 4

FIGURE 4.10

Operation of the WDCOUNT program.

This way you don’t get a false count if you type multiple spaces between words. (It still
doesn’t handle tabs and other whitespace characters.) Here’s the listing for wnCOUNT: This
example shows an enumeration with only two enumerators.

SRANLONYLS

// wdcount.cpp

Structures

// demonstrates enums, counts words in phrase

#include <iostream>
using namespace std;
#include <conio.h>

enum jtsaword { NO, YES };

int mainQ)

{
jtsaword isword = NO;

char ch = ‘a’;
int wordcount = 0;

cout << “Enter a phrase:\n”;
do {
ch = getche(Q);

//for getche(Q)

//N0o=0, YES=1

//YES when in a word,

//NO when in whitespace
//character read from keyboard
//number of words read

//get character

if(ch==""° || ch=="\r’) //if white space,
{
if(isword == YES) //and doing a word,
{ //then it’s end of word
wordcount++; //count the word
isword = NO; //reset flag
}
} //otherwise, it’s
else //normal character
if(isword == NO) //if start of word,

isword = YES;
} while(ch != ‘\r’);
cout << “\n---wWord count is
return 0O;

}

//then set flag
//quit on Enter key
“ << wordcount << “---\n”;

19

The program cycles in a do loop, reading characters from the keyboard. It passes over (non-

space) characters until it finds a space. At this point it counts a word. Then it passes over

spaces until it finds a character, and again counts characters until it finds a space. Doing this
requires the program to remember whether it’s in the middle of a word, or in the middle of a
string of spaces. It remembers this with the enum variable isword. This variable is defined to be
of type itsaword. This type is specified in the statement

enum jtsaword { NO, YES };

Variables of type itsaword have only two possible values: NO and YES. Notice that the list
starts with NO, so this value will be given the value 0—the value that indicates false. (We could
also use a variable of type boo1 for this purpose.)

20 Chapter 4

The isword variable is set to NO when the program starts. When the program encounters the
first nonspace character, it sets isword to YES to indicate that it’s in the middle of a word. It
keeps this value until the next space is found, at which point it’s set back to No. Behind the
scenes, NO has the value 0 and YES has the value 1, but we avoid making use of this fact. We
could have used if(isword) instead of if(isword == YES), and if(!isword) instead of
if(isword == NO), but this is not good style.

Note also that we need an extra set of braces around the second if statement in the program,
so that the else will match the first i f.

Another approach to a yes/no situation such as that in WDCOUNT is to use a variable of type
bool. This may be a little more straightforward, depending on the situation.

Other Examples

Here are some other examples of enumerated data declarations, to give you a feeling for possi-
ble uses of this feature:

enum months { Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec };

enum switch { off, on };
enum meridian { am, pm };
enum chess { pawn, knight, bishop, rook, queen, king };

enum coins { penny, nickel, dime, quarter, half-dollar, dollar };

We’ll see other examples in future programs.

