
Constructors and Deconstructor

The most common use of destructors is to deallocate memory that was allocated for the

object by the constructor.

Objects as Function Arguments

our next program adds some embellishments to the ENGLOBJ example. It also

demonstrates some new aspects of classes:

- Constructor overloading.

- defining member functions outside the class

- Defining objects as function arguments.

#include <iostream>

class Distance //English Distance class

{

private:

 int feet;

 float inches;

public:

 //constructor (no args)

 { }

 //constructor (two args)

 Distance(int ft, float in) : feet(ft), inches(in)

 { }

 void getdist() //get length from user

 {

 c \

 }

 void showdist() //display distance

 {

 \ - \

Constructors and Deconstructor

 }

 void add_dist(Distance, Distance); //declaration

 };

 {

 if(in

 { //then decrease inches

 inches -

 feet++; //increase feet

 ; //add the feet

 }

int main()

{

 //display all lengths

 \

 \

 \

 cout << endl;

}

Constructors and Deconstructor

value and adds to it a distance

 whose value is supplied by the user, to obtain the sum of the distances. It then

displays all three distances:

-

-

-

-Overloaded Constructors

created. That is, we would like to use definitions like

; which defines an object, width, and simultaneously initializes it

to a

To do this we write a constructor like this:

Distance(int ft, float in) : feet(ft), inches(in)

{ }

This sets the member data feet and inches to whatever values are passed as arguments to

the constructor.

However, we also want to define variables of type Distance without initializing them, as

we did in ENGLOBJ.

In that program there was no constructor, but our definitions worked just fine. How could

they work without a constructor? Because an implicit no-argument constructor is built into

the program

objects, even though we -argument constructor is

called the default constructor. If it

 class for which no constructor was defined.

Constructors and Deconstructor

Often we want to initialize data members in the default (no-argument) constructor as well.

If we let the default

may be given. If we care what values they may be given, we need to explicitly define the

constructor. In ENGLECON we show how this looks:

the no-

 inches) rather than some arbitrary value.

Since there are now two explicit constructors with the same name, Distance(), we say the

constructor is overloaded. Which of the two constructors is executed when an object is

created depends on how many arguments are used in the definition:

Distance length; // calls first constructor

 -Member Functions Defined Outside the Class

need not always is the case. ENGLCON shows a member function, add_dist(), that is not

defined within the Distance class definition. It is only declared inside the class, with the

statement

This tells the compiler that this function is a member of the class but that it will be defined

outside the class declaration, someplace else in the listing.

In ENGLCON the add_dist() function is defined following the class definition.

{

ing

void add_dist(Distance, Distance)

Constructors and Deconstructor

{ //then decrease inches

inches -

feet++; //increase feet

}

The declarator in this definition contains some unfamiliar syntax. The function name,

add_dist(), is preceded by the class name, Distance, and a new symbol the double colon

(::). This symbol is called the scope resolution operator. It is a way of specifying what

class something

add_dist() member

-Objects as Arguments

the constructor (the one that takes no

arguments). that takes two arguments,

and is initialized to the values passed in these arguments. A value is

calling the member function getdist(), which obtains values from the user.

on call in main()

Constructors and Deconstructor

add_dist(). The syntax for arguments that are objects is the same as that for arguments

that are simple data types such as int: The object name is supplied as the argument. Since

add_dist() is a member function of the Distance class, it can access the private data in any

Close examination of add_dist() emphasizes some important truths about member

functions.

A member function is always given access to the object for which it was called: the object

connected to it with the dot operator. But it may be able to access other objects. In the

following statement in ENGLCON, what objects can add_dist() access?

they are supplied as arguments. You might think of

the member function always has access to it, even though it is not supplied as an argument.

When the variables feet and inches are referred to within this function, they refer to

Notice that the result is not returned by the function. The return type of add_dist() is void.

nces

To summarize, every call to a member function is associated with a particular object

(unless

and inches), the function has direct access to all the members, whether private or public, of

that object. It also has indirect access, using the object name and the member name,

connected with of the same

class that are passed as arguments.

Constructors and Deconstructor

