
Computer System Operation:

A modern, general-purpose computer system consists of CPU and a

number of device controllers that connected through a common bus that

provides access to shared memory system, CPU other devices can

execute concurrently competing for memory cycles.

Booting:

It is the operation of bringing operating system kernel from the secondary

storage and put it in main storage to execute it in CPU. There is a

program bootstrap which is performing this operation when computer is

powered up or rebooted.

Bootstrap software: it is an initial program and simple it is stored in read-

only memory (ROM) such as firmware or EEPROM within the computer

hardware.

Jobs of Bootstrap program:

1- Initialize all the aspect of the system, from CPU registers to device

controllers to memory contents.

2- Locate and load the operating system kernel into memory then the

operating system starts executing the first process, such as “init” and

waits for some event to occur.

The operating system then waits for some event to occur

Types of events are either software events (system call) or hardware

events (signals from the hardware devices to the CPU through the system

bus and known as an interrupt).

Note: all modern operating system are “interrupt driven”.

Trap (exception): it is a software-generated interrupt caused either by an

error (ex: division by zero or invalid memory access) or by a specific

request from a user program that an operating system service be

performed.

Interrupt vector (IV): it is a fixed locations (an array) in the low memory

area (first 100 locations of RAM) of operating system when the interrupt

occur the CPU stops what its doing and transfer execution to a fixed

location (IV) contain starting address of the interrupt service

routine(ISR), on completion the CPU resumes the interrupted

computation.

Interrupt Service Routine: is it a routine provided to be responsible for

dealing with the interrupt.

I/O Structure

Each I/O device connected to the C/S through its controller . A device

controller maintains some local buffer storage and a set of special

purpose registers [It is responsible for moving the data between the

peripheral devices that is controls and its local buffer storage]

I/O Interrupts

To start an I/O operation the CPU loads the appropriate registers within

the device controller . The controller examines the contents of these

registers to determine what action to take. For example if it finds a read

request the controller will start the transfer of data from the device to its

local buffer . Once the transfer of data is complete the device controller

informs the CPU that it has finished its operation.

DMA Structure

A high _speed device such as a tape , disk , or communication network

may be able to transmit information at close to memory speeds , the CPU

would need 2 microseconds to respond to each interrupt . That would not

leave much time for process execution . To solve this problem Direct

Memory Access (DMA) is used for high speed I/O devices After setting

up buffer , pointers , and counters for I/O device , the device controller

transfers an entire block of data directly to or from its own buffer storage

to memory with no intervention by the CPU Only one interrupt is

generated per block rather than one interrupt per byte (or word)

generated for low speed devices

The DMA controller interrupts the CPU when the transfer has been

completed

Storage Structure

The programs must be in main memory to be executed . Main memory is

the only large storage area that the processor can access directly . Each

word in memory has its own address.

Interaction is achieved through a sequence of load or store instruction to

specific memory addresses. The load instruction moves a word from main

memory to an internal register within the CPU where as the store

instruction moves the content of register to main memory.

We want the programs and data to reside in memory permanently .

This arrangement is not possible for the following two reasons:

A: Main memory is usually too small to store all needed programs and

data permanently.

B: Main memory is volatile storage device that loses its contents when

power is turned off or otherwise lost.

 Therefore most C/S provide secondary storage as an extension of main

memory. It be able to hold large quantities of data permanently . The

most common secondary storage device is a magnetic disk which

provides storage of both programs and data . There are other many media

such as floppy disks , CD, ROMs , and DVDs.

Storage Hierarchy
The variety of storage systems in a C/S can be organized in hierarchy

according to speed and their cost . figure below the higher levels are

expensive , but are fast .

Registers

rs

Magnetic Disk

Cache

Magnetic Tape

Main Memory

Electronic Disk

Optical Disk

Low capacity

, high cost ,

high speed

Hardware protection:

when we have single user any error occur to the system then we could

determined that this error must be caused by the user program ,but when

we begin to dealing with spooling ,multiprogramming, and sharing disk

to hold many users data this sharing both improved utilization and

increase problems .

In multiprogramming system, where one erroneous program might

modify the program or data of another program, or even the resident

monitor itself. MS-DOS and the Macintosh OS both allow this kind of

error.

A properly designed operating system must ensure that an incorrect (or

malicious) program cannot cause other program to execute incorrectly.

Many programming error are detected by the hardware these error are

normally handled by the operating system.

Dual-Mode Operation:

To ensure proper operation, we must protect the operating system and all

other programs and their data from any malfunctioning program.

The approach taken by many operating systems provides hardware

support that allows us to differentiate among various modes of execution.

A bit, called the mode bit is added to the hardware of the computer to

indicates the current mode: monitor (0) or user (1) with mode bit we

could distinguish between a task that is executed on behalf of the

operating system , and one that is executed on behalf of the user.

I/O Operation Protection:

A use program may disrupt the normal operation of the system by issuing

illegal I/O instruction we can use various mechanisms to ensure that such

disruption can not take place in the system.

One of them is by defining all I/O instructions to be privileged

instructions. Thus users cannot issue I/O instructions directly they must

do it through the operating system, by execute a system call to request

that the operating system performing I/O in its behalf. The operating

system, executing in monitor mode, check that the request is valid, and (if

the request is valid) does the I/O requested. The operating system then

returns to the user.

Memory Protection:

To insure correct operation, we must protect the interrupt vector and

interrupt service routine from modification by a user program. This

protection must be provided by the hardware, we need the ability to

determine the range of legal addresses that the program may access, and

to protect the memory outside that space. We could provided the

protection by using two registers a base register and limit register

Base register hold the smallest legal physical memory address.

Limit register: contains the size of the range.

This protection is accomplished by the CPU hardware comparing every

address generated in user mode with the registers. Any attempt by a

program executing in user mode to access monitor memory or other

users’ memory results in a trap to the monitor, which treats the attempts

as a fatal error.

CPU Protection:

In addition to protecting I/O and memory we must insure that the

operating system maintains control. We must prevent the user from

getting stuck in an infinite loop or not calling system services, and never

returning control to the operating system. To accomplish this goal, we

can use a timer.

Timer can be set to interrupt the computer after a specified period. The

period may be fixed (for example, 1/60 second) or variable (for example,

from 1 millisecond to 1 second) A variable timer is generally

implemented by a fixed rate clock and a counter.

We can use the timer to prevent a user program from running too long

Simple technique is to initialize a counter with the mount of time that a

program is allowed to run.

Amore common use of timer is to implement time sharing. In the most

case, the timer could be set to interrupt every N millisecond, where N is

the time slice that each user is allowed to execute before the next user get

control of the CPU. The operating system is invoked to perform

housekeeping tasks.

This procedure is known as a context switching, following a context

switch, the next program continues with its execution from the point at

which it left off.

