
Deadlock prevention

It is a set of methods for ensuring that at least one of the necessary conditions can not hold.

These methods prevent deadlocks by constraining how requests for sources can be made.

 The mutual-exclusion condition must hold for non –sharable resource, sharable

resources on the other hand do not require mutually exclusive access.

 To ensure that hold-and-wait condition never occurs in the system must guarantee that

whenever a process request a resource it does not hold any other resources. This can be

implemented by :

1- Allocate all resources to process before its execution .

2- A process request a resource only allowed when it has none. The problems with this the

low utilization of resource usage and starvation.

 No –preemption

 If a process that is holding some resources request another resources that can not

allocated to it then all resources currently being held are preempted.

 Circular wait

 Let R ={ R1 , R2 , R3 , ….. , Rn } be the set of resource types we can assign to each

type a number which allow us to compare two resources . If we define a one – to – one

function F : R N where N is the set of numbers.

Example :

F(T/Drive)=1

F(Disk/Drive)=5

F(Printer)=12

Each process can request resources only in an increasing order of enumeration. That is

process initially request any number of instances of Ri after that the process can request

instances of resource type Rj if and only if

F(Rj) F(Ri)

Deadlock Avoidance
For avoiding deadlock is to require additional information about how resources are to be

requested.

For example in C/S with one tape and one printer we might be told that process P will

request first M/T and later L/P before releasing both resources. Process Q on the other hand

will request first the printer and then the M/T. With this knowledge of the complete sequence

of request and releases for each process we can decide for each request whether or not the

process should wait.

Each request requires that then consider the following :

1- The resources currently available .

2- The resources currently allocated to each process.

3- The future requests and releases of each process.

The above information used to decide whether the current request can be satisfied or must

wait to avoid a possible future deadlock.

The various algorithms differ in the amount and type of information required. The simplest

and most useful model requires that each process declare the maximum number of each type

that it may need. A deadlock avoidance algorithm dynamically examines the resource-

allocation state to ensure that these can never be a circular – wait condition.

resources and allocatedand availableThe resource allocation state is defined by number of

of the processes. demandsmaximum

- Safe state

A state is safe if the system can allocate resources to each process (up to maximum) in

some order and still avoid a deadlock.

A safe state is not a deadlock state , and a deadlock state is an unsafe state , but not all unsafe

states are deadlock. An unsafe state may lead to a deadlock.

Fig : unsafe &deadlock state space

Example :- to illustrate consider a system with 12 M/T and 3 process :

P0 , p1 and p2 . The maximum needs and current needs for each process as indicated below

(Allocated)

 Maximum needs Current needs available

P0 10 5 3

P1 4 2

P2 9 2

At time the system is in a safe state. The sequence [p0 , p1 , p2]

Suppose that at time t1 process p2 requests and is allocated 1 move tape drive . the system is

no longer in safe state .At this point only process p1 can be allocated all

 its tape drives . When it returns the system have only if available and this number not satisfy

the request for p0 or p2 therefore

P0 p2 P0

If we had made p2 wait until either of the order process had finished and released its

resources then we could have avoided the deadlock situation.

There are many deadlock avoidance algorithms , some of these are :

Deadloc

k

unsafe

safe

Wait Wait

a- RAG Algorithm

If we have a RAG system with only one instance of each resource type . In addition to the

request and assignment edges we introduce a new type of edge called a claim edge Pi Rj

indicates that process Pi may request resource Rj at some time in the future. It is as a request

edge in direction but is represented by a dashed- line when process pi request Rj the claim

edge Pi Rj is converted to a request edge . When a resource Rj is released by pi the

assignment edge Rj Pi is reconverted to a claim edge Pi Rj.

To illustrate this algorithm consider the RAG in fig below suppose that p2 request r2 .

Although r2 is currently free we can not allocate it to p2 since this action will create a cycle in

the graph figure . A cycle indicates that the system is in an unsafe state . If P1 then requests r2

a deadlock will occur.

Fig : RAG for deadlock avoidance

Fig : An unsafe state in a RAG

R

R

Claim

P

1 P

R

R

Claim

P

1 P

