
Real Memory Organization ch7

 Memory Management Strategies

-These strategies are designed to obtain the best possible use of main memory. They are

divided into:

1. Fetch strategies: determine when to move the next piece of a program or data to main

memory from secondary storage. We divide them into demand and anticipatory. In demand

fetch strategy, the system places the next piece of program or data in main memory when a

running program references it. Today, many systems have increased performance by

employing anticipatory fetch strategies, which attempt to load a piece of program or data into

memory before it is referenced.

2. Placement strategies: determine where in main memory the system should place

incoming program or data pieces, first fit, best fit, and worst fit, memory placement

strategies.

3. Replacement strategies: when memory is too full to accommodate a new program, the

system must remove some (or all) of a program or data that currently resides in memory. The

system's replacement strategy determines which piece to remove.

Contiguous Vs Noncontiguous Memory Allocation

-Contiguous Memory Allocation: to execute a program in early computer systems, the

system operator or the operating system had to find enough contiguous main memory to

accommodate the entire program. If the program was larger than the available memory then

the system could not execute it.

-In Non-Contiguous Memory Allocation: a program is divided into blocks or segments that

the system may place in non adjacent slots in main memory. This

allows making use of holes (unused gaps) in memory that would be too small to hold whole

programs.

Single-User Contiguous Memory Allocation

-Early computer systems allowed only one person at a time to use a machine. All the

machine's resources were dedicated to that user and the user was charged for all the

resources whether or not the user's job required them.

-The programmer wrote all the code necessary to implement a particular application

including I/O instructions. The designers consolidated (combined) I/O coding that

implemented basic functions into an I/O control system (IOCS). The programmer called

IOCS routines to do the work.

 Overlays

-One way in which a software designer could overcome the memory limitations was to create

overlays, which allowed the system to execute programs larger than main memory.

-The programmer divides the program into logical sections. When the program does not need

the memory for one section, the system can replace some or all of it with the memory for a

needed section. Overlays enable the programmers to extend main memory.

OS

User

Unused

0

a

b

c

Single-user

contiguous

0

a

b

OS

Portion of user code

& data that must

remain in mm for

duration for

execution

1

2

3

User program with memory requirement

larger than available portion of mm

initialization processing output

 phase phase phase
b b b

1 load initialization phase at b and run

2 then load processing phase at b and run

3 then load output phase at b and run

