
Deadlock

By

Lecturer: Ameen A.Noor

• A Computer System consist of a finite number of
resources to be distributed among a number of
computing processes.

• The resources are partitioned into several types, each of
which consists of some number of identical instances
memory, CPU cycles, files, and I/O devices are examples
of resource types.

• Under the normal of operation, a process may utilize a
resource in only the following sequence:

a. Request: If the request cannot be granted immediately
then the requesting process must wait until it can acquire
the resource.

b. Use: The process can operate on the resource (for
example, if the resource is a printer, the process can print
on the printer).

c. Release: The process releases the resource.

• A set of processes each holding a resource and waiting to
acquire a resource held by another process in the set.

Pi

Pj

Tape driver Printer

acquire request

a. Mutual Exclusion: Only one process can use a particular resource at the
specified time.

b. Hold and Wait: The process maintains at least one resource, and is
waiting for additional resources currently being held by other operations.

c. No Preemption: Resources cannot be preempted, that is a resource can
be released only voluntarily by the process holding after that process has
completed its task.

d. Circular Wait: There must exist a set {p0,p1,….,pn}of waiting processes
such that p0 is waiting for resource that is held by p1, p1 is waiting for a
resource that is held by p2, …pn-1 is waiting for a resource that is held by
pn, and pn is waiting for a resource that is held by p0.

• A set of processes {P0, P1, …}

• A set of resource types {R1, R2, …}, together with
instances of those types

Pj

Rk

• Pi Rj

– process i has requested an instance of resource j

– called a request edge

• Rj Pi

– an instance of resource j has been assigned to process i

– called an assignment edge

R1

P1 P2 P3

R3

R2 R4

Instance

Resource

Assignment edge
Request edge

Process

Process states:

P1 R1, P2 R3, R1 P2, R2 P1, R2 P2, R3 P3

• By using a RAG it can be easily shown that if the graph
contain no cycles, then no process in the system is
deadlocked.

• On the other hand if the graph contains a cycle then a
deadlock may exist.

• If the cycle involves only a set of resource types each of
which has only a single instance then a deadlock has
occurred.

• In this case a cycle in the graph is both a necessary and a
sufficient condition for the existence of deadlock.

• If each resource type has several instances then a cycle
does not necessarily imply that a deadlock occurred.

• In this case a cycle in the graph is a necessary but not a
sufficient condition for the existence of deadlock.

R1

P1 P2 P3

R3

R2 R4

Two minimal cycles exist in the system:

P1 R1 P2

 R3

 P3 R2 P1

R3

 P3 R2

Process P1, P2 and P3 are deadlocked.

P2 P2

P1

P3

P2

R2

P4

R1

In this example, we also have a cycle.

P1 R1 P2 R2

However, there is no deadlock.

P1

a. We can use a protocol to ensure the system will never
enter a deadlock state.

b. Allow the system to enter a deadlock state and then
recover.

c. We can ignore the problem all together and pretend that
deadlocks never occur in the system.

• Stop a deadlock ever occurring

– deadlock prevention

• disallow at least one of the necessary conditions

– deadlock avoidance

• Does not meet the request if the process was causing
deadlock

a. Mutual-exclusion: The mutual-exclusion condition must hold
for non–sharable resource. For example, a printer cannot be
simultaneously shared by several processes. Sharable resources
on the other hand do not require mutually exclusive access, and
thus cannot be involved in a deadlock.

b.Hold and Wait: To ensure that hold-and-wait condition never
occurs in the system must guarantee that whenever a process
request a resource it does not hold any other resources.

c. No – preemption: If a process that is holding some resources
request another resources that cannot allocated to it then all
resources currently being held are preempted.

d. Circular wait: Let R = { R1 , R2 , R3 , ….. , Rn } be the set of resource
types. We can assign to each type a unique integer number which
allow us to compare two resources.

F(tape drive)=1

F(disk drive)=5

F(printer)=12

We can now consider the following protocol to prevent deadlocks:
Each process can request resources only in an increasing order of
enumeration. That is process initially request any number of
instances of Ri after that the process can request instances of
resource type Rj if and only if F(Rj) >F(Ri).

• Prevent deadlocks by restraining how requests can be made.

• The restraints ensure that at least one of the necessary
conditions for deadlock cannot occur, and, hence, that
deadlocks cannot hold.

• Possible side effects of preventing deadlocks by this method,
however, are low device utilization and reduced system
throughput.

• A state is safe if the system can allocate resources to each
process (up to maximum) in some order and still avoid a
deadlock.

• A safe state is not a deadlock state, and a deadlock state is an
unsafe state, but not all unsafe states are deadlock. An
unsafe state may lead to a deadlock.

to illustrate consider a system with 12 magnetic tape drives
 3 process (P0 , P1 , P2).
Process P0 requires 10 tape drives, process P1 may need as many as 4, and
process P2 may need up to 9 tape drives.
Suppose that, at time t0, process P0 is holding 5 tape drives, process P1 is
holding 2, and process P2 is holding 2 tape drives. (Thus, there are 3 free
tape drives). The maximum needs and current needs for each process as
indicated below:

Maximum

needs

Current

needs
Available

P0 10 5

3 P1 4 2

P2 9 2

At time t0, the system is in a safe state. The sequence < P1 , P0 , P2> satisfies

the safety condition.

There are many deadlock avoidance algorithms, some of these
are:

• Resource-Allocation Graph Algorithm

 If we have a RAG system with only one instance of each
resource type. In addition to the request and assignment
edges we introduce a new type of edge called a claim edge.

A claim edge Pi Rj indicates that process Pi may request
resource Rj at some time in the future.

This edge as a request edge in direction but is represented
by a dashed- line.

• when process Pi request Rj the claim edge Pi Rj is
converted to a request edge.

• When a resource Rj is released by Pi the assignment edge
Rj Pi is reconverted to a claim edge Pi Rj .

R1

R2

P2 P1

RAG for deadlock avoidance

R1

R2

P2 P1

Unsafe state in RAG

• The banker’s algorithm which is also known as avoidance algorithm
is a deadlock detection algorithm.

• It is designed to check the safe state whenever a resource is
requested.

• When a new a process enters the system it must declare the
maximum number of instances of each resource type that it may
need.

• The maximum must be ≤ total number of resources in the system.

• When a user requests a set of resources must be leave the system in
a safe state.

• Several data structures must be maintained to implement banker’s
algorithm. We need the following data structures:

Available: indicates the number of available resources of each type. If
available[j]=k these are k instances of resource type Rj available.

Max: defines the maximum demand of each process. If max[i,j] = k then
process Pi may request at most k instances of resource type Rj

Allocation: the resources currently allocated to each process. If
allocation[i,j] = k then process Pi is currently allocated k instances of
resource type Rj.

Need: the remaining resource need of each process. If Need[i,j]=k then
process Pi may need k more instances of resource type Rj to complete its
task.

 Need[i,j] = Max [i,j] – Allocation [i,j]

Example of Banker’s Algorithm

• 5 processes P0 through P4;

 3 resource types:

 A (10 instances), B (5instances), and C (7 instances).

• Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

Example (Cont.)

• The content of the matrix Need is defined to be Max – Allocation.

 Need

 A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria.

Example of Safe State:

 Max Allocated Current need Available

P1 4 1 3

2 P2 6 4 2

P3 8 5 3

Suppose a system contains 12 resources and three processes
sharing the resources, as in table below.

The sequence < P2 , P1 , P3> satisfies the safety condition.

Example of Unsafe State:

 Max
Allocate

d

Current

need
Available

P1 10 8 2

1 P2 5 2 3

P3 3 1 2

Suppose a system contains 12 resources and three processes
sharing the resources, as in table below.

• Deadlock detection is the process of determining that a
deadlock exists and identifying the processes and resources
involved in the deadlock.

• Deadlock detection algorithms generally focus on determining
if a circular wait exists, given that the other necessary
conditions for deadlock are in place.

• In this environment, the system must provide:

An algorithm that examines the state of the system to
determine whether a deadlock has occurred.

An algorithm to recover from the deadlock.

Example of Detection Algorithm

• Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances).

• Snapshot at time T0:

 AllocationRequestAvailable

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

Example (Cont.)
• P2 requests an additional instance of type C.

 Request

 A B C

 P0 0 0 0

 P1 2 0 1

 P2 0 0 1

 P3 1 0 0

 P4 0 0 2

• State of system?

– Can reclaim resources held by process P0, but insufficient
resources to fulfill other processes; requests.

– Deadlock exists, consisting of processes P1, P2, P3, and P4.

• When a detection Algorithm determines that a deadlock exists
the system must recover from the deadlock.

• There are two options for breaking a deadlock

a. Process termination by killing a process, two methods:

Kill all deadlocked processes.

Kill one process at a time until the deadlock cycle is
eliminated.

b. Resource preemption: to eliminate deadlocks using resource
preemption we can preempt some resources from processes and
give them to other processes until the deadlock cycle is broken.

• If preemption is required in order to deal with deadlocks
then three issues need to be addressed:

Selecting a victim: which process and which resources.

Rollback: if we preempt a resource from a process what
should be done with that process?

Starvation.

