
Memory Management

By

Lecturer: Ameen A.Noor

• These strategies are designed to obtain the best possible use of main
memory. They are divided into:

1. Fetch strategies: determine when to move the next piece of a program or
data to main memory from secondary storage. We divide them into:

• demand fetch strategy.

• anticipatory fetch strategy.

2. Placement strategies: determine where in main memory the system should
place incoming program or data pieces, first fit, best fit, and worst fit.

3. Replacement strategies: when memory is too full to accommodate a new
program, the system must remove some (or all) of a program or data that
currently resides in memory.

• Contiguous Memory Allocation: to execute a program in early
computer systems, the system operator or the operating system
had to find enough contiguous main memory to accommodate
the entire program. If the program was larger than the available
memory then the system could not execute it.

• Non-Contiguous Memory Allocation: a program is divided into
blocks or segments that the system may place in non-adjacent
slots in main memory. This allows making use of holes (unused
gaps) in memory that would be too small to hold whole
programs.

• One way in which a software designer could overcome the
memory limitations was to create overlays, which allowed
the system to execute programs larger than main memory.

Swapping
• A process can be swapped temporarily out of memory to a backing store,

and then brought back into memory for continued execution

• Backing store – fast disk large enough to accommodate copies of all memory
images for all users; must provide direct access to these memory images

• Roll out, roll in – swapping variant used for priority-based scheduling
algorithms; lower-priority process is swapped out so higher-priority process
can be loaded and executed

• Major part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swapped

• Modified versions of swapping are found on many systems (i.e., UNIX, Linux,
and Windows)

• System maintains a ready queue of ready-to-run processes which have
memory images on disk

• Without protection, the process may alter the operating system.

• The protection can be implemented with a single boundary register built
into the processor.

• The boundary register contains the memory address at which the user's
program begins.

• Each time a process references a memory address, the system determines if
the request is for an address greater than or equal to that stored in the
boundary register.

- If so, the system services the request.

- If not, then the program is trying to access the operating system.

• The system intercepts the request and terminates the process with an
appropriate error message.

OS

Partition1

Partition 2

Partition 3

0

230

240

270

320

240

270

Low boundary

High boundary

Partition Size of Partition Begin Use

Partition 1 10 230 Empty

Partition 2 30 240 Empty

Partition 3 50 270 Busy

• The earliest multiprogramming systems used fixed partition
multiprogramming.

• The system divides main memory into a number of fixed size partitions
each partition holds a single job.

• In the earliest multiprogramming systems, the programmer translated a
job using an absolute assembler or compiler.

• It meant that a job had its precise location in memory determined
before it was launched and could run only in a specific partition.

• If the programs partition was occupied then that job had to wait even if
other partitions were available.

Operating system

Partition 1

Partition 2

Partition 3

a

b

c

d

Job queue for partition

These jobs run only in

Partition 1

These jobs run only in

Partition 2

These jobs run only in

Partition 3

0

Operating system

Partition 1

(empty)

Partition 2

(empty)

Partition 3

In use

a

b

c

d

Job queue for partition 1

No jobs waiting for

Partition 1

No jobs waiting for

Partition 2

These jobs run only in

Partition 3

Job queue for partition 2

Job queue for partition 3

0

To overcome the problem, the developers created relocating compilers,

assemblers and loaders. These tools produce a Relocatable program that can run

in any available partition that is large enough to hold that program.

Operating system

Partition 1

Partition 2

Partition 3

a

b

c

d

Job queue

0

Protection often is implemented with multiple boundary register. The

system can delimit each partition with two boundary registers low

and high, also called base and limit registers.

Fixed partition multiprogramming suffers from internal

fragmentation, which occurs when the size of a process's memory

and data is smaller than that of the partition in which the process

executes.

Operating system

Partition 1

Partition 2

Partition 3

a

b

c

d

Unused memory

 Used memory

0

• Fixed-partition multiprogramming imposes restrictions on a
system that result in inefficient resource use.

• For example, a partition may be too small to accommodate a
waiting process, or so large that the system loses considerable
resources to internal fragmentation.

• An obvious improvement, operating system designers decided,
would be to allow a process to occupy only as much space as
needed (up to the amount of available main memory). This
scheme is called variable-partition multiprogramming.

• The process of merging adjacent holes to form a single,
larger hole is called coalescing (merge things). The system
reclaims the largest possible contiguous blocks of memory.

OS

Hole 5

P4

Hole 3

Hole 2

P1

P6

OS

Hole 5

P4

Hole (2+3)

P1

P6

Merging

Small

over head

• Another technique for reducing external fragmentation is called
memory compaction (defragmentation).

• This relocates all occupied areas of memory to one end of main
memory. Now all of the available free memory is contiguous.

• The drawbacks are:

- Overhead consumes system resources.

- The system must cease (stop something) all other computation
during compaction which results in erratic response times for
interactive users.

OS

Hole 5

P4

Hole 3

Hole 2

P1

P6

OS

P6

P4

P1

Holes

(2 + 3 + 5)

Same locations

No relocation

A
ddre

ss
 R

el
oca

tio
n

A
ddre

ss
 R

el
oca

tio
n

Large

overhead

Memory Memory

All
processes

in

One

 area

Holes In

one area

• Determines where in main memory to place incoming
programs and data. The main strategies are:

- Best fit: place the job in the smallest possible hole. The
disadvantage is that the rest of hole will not be enough for new
job.

- First fit: place the job in the first suitable hole. The advantage
is low overhead i.e. small CPU wasted time in implementing the
strategy.

- Worst fit: place the job in the largest available hole. The rest
of hole may be still enough for new job.

P!

hole

OS

P8

hole

P6

P5

hole

P3

hole

P10 P9P11

Firs
t fi

t

Best fit

Worst fit

Image of

10000 byte

Memory

15000 byte

10200 byte

25000 byte

8000 byte

Programs

on disk

Fragmentation

• External Fragmentation: total memory space exists to satisfy a request, but it is not
contiguous

• Reduce external fragmentation by compaction

 - shffle memory contents to place all free memory together in one large block

 - Compaction is possible only if relocation is dynamic, and is done at execution

 time.

 - I/O problem

 @ Latch job in memory while it is involved in I/O

 @ Do I/O only into OS buffers

43K 5K 31K 8K 22K 12K 8K

Fragmentation
• Internal Fragmentation: allocated memory may be slightly

larger than requestedmemory, this size difference is memory
internal to a partition, but not being used

 Equal size partitioning unequal size partitioning

