Theorem (1-5):- Every finite integral domain is field .

Proof:-

Let (R, +, .) be a finite integral domain.

< T-P (R, +, .) is a field >?

(R, +, .) be a finite integral domain (R, +, .) is a commutative ring with identity and has no zero divisors $\dots *$ and (R, +, .) has n distinct elements

let $a \in \mathbb{R}$ and $a \neq 0$ < **T-p**, *a* is an invertible element >?

Consider the set $R^* = \{a. x, \forall x \in R \text{ and } x \neq 0\}$

```
\because \forall y \in \mathbf{R}^* \ , y \neq 0
```

If $a \cdot x = a \cdot y$

 $\Rightarrow a.x - a.y$

$$\Rightarrow a. (x - y) = 0$$

since , R has no zero divisors and $a \neq 0$

$$\Rightarrow$$
(x - y) =0

$$\Rightarrow x = y$$

∴, R* containing all distinct non zero elements of R \implies R* = R - {0}
Since, R is a ring with identity $\implies 1 \in \mathbb{R}$ $\implies 1 \in \mathbb{R}^*$ (since $\mathbb{R}^* = \mathbb{R} - \{0\}$) $\implies 1 = a.x$, for some $x \in \mathbb{R}$ $\implies a^{-1} = x$.
Then, each element of R has multiplicative inverse **

Therefore, by * and ** we get (R, +, .) is field. \Box