Theorem (1-5):- Every finite integral domain is field .

Proof:-

Let ($R,+,$.) be a finite integral domain .
$<$ T-P $(R,+,$.$) is a field >$?
$\because(R,+,$.$) be a finite integral domain$
$\therefore(R,+,$.$) is a commutative ring with identity and has no zero$ divisors $\cdots \cdots *$ and ($\mathrm{R},+$,.) has n distinct elements
let $a \in \mathrm{R}$ and $a \neq 0 \quad<\mathrm{T}-\mathrm{p}, \boldsymbol{a}$ is an invertible element $>$?
Consider the set $\mathrm{R}^{*}=\{a . \mathrm{x}, \forall \mathrm{x} \in \mathrm{R}$ and $\mathrm{x} \neq 0\}$
$\therefore \forall y \in \mathrm{R}^{*}, y \neq 0$
If $a . \mathrm{x}=a . \mathrm{y}$
$\Rightarrow a . \mathrm{x}-a . \mathrm{y}$
$\Rightarrow a .(\mathrm{x}-\mathrm{y})=0$
since , R has no zero divisors and $a \neq 0$

$$
\begin{aligned}
& \Rightarrow(\mathrm{x}-\mathrm{y})=0 \\
& \Rightarrow \mathrm{x}=\mathrm{y}
\end{aligned}
$$

$\therefore, \mathrm{R}^{*}$ containing all distinct non zero elements of $\mathrm{R} \stackrel{\text { (i.e) }}{\Rightarrow} \mathrm{R}^{*}=\mathrm{R}-\{0\}$
Since, R is a ring with identity حسب المعطى $\Rightarrow 1 \in R$
$\Rightarrow 1 \in R^{*}\left(\right.$ since $R^{*}=R-\{0\}$)
$\Rightarrow 1=a . \mathrm{x}, \quad$ for some $\mathrm{x} \in \mathrm{R}$
$\Rightarrow a^{-1}=\mathrm{x}$.
Then , each element of R has multiplicative inverse
Therefore, by $*$ and $* *$ we get $(\mathrm{R},+,$.$) is field .$

