
. Ahmed Hashim MohammedDr Class const OOP

Const and Classes

We’ve seen several examples of const used on normal variables to prevent

them from being modified, and in Chapter 5 we saw that const can be used

with function arguments to keep a function from modifying a variable

passed to it by reference. Now that we know about classes, we can

introduce some other uses of const: on member functions, on member

function arguments, and on objects. These concepts work together to

provide some surprising benefits.

const Member Functions A const member function guarantees that it will

never modify any of its class’s member data.

The CONSTFU program shows how this works.

//constfu.cpp

//demonstrates const member functions

/

class aClass

{

private:

int alpha;

public:

void nonFunc() //non-const member function

{ alpha = 99; } //OK

void conFunc() const //const member function

{ alpha = 99; } //ERROR: can’t modify a member

};

. Ahmed Hashim MohammedDr Class const OOP

The non-const function nonFunc() can modify member data alpha, but

the constant function conFunc() can’t. If it tries to, a compiler error

results.

A function is made into a constant function by placing the keyword const

after the declaratory but before the function body. If there is a separate

function declaration, const must be used in both declaration and

definition. Member functions that do nothing but acquire data from an

object are obvious candidates for being made const, because they don’t

need to modify any data.

const Member Function Arguments

Making a function const helps the compiler flag errors, and tells anyone

looking at the listing that you intended the function not to modify anything

in its object. It also makes possible the creation and use of const objects,

which we’ll discuss soon.

A Distance Example to avoid raising too many subjects at once we have,

up to now, avoided using const member functions in the example

programs. However, there are many places where const member functions

should be used. For example, in the Distance class, shown in several

programs, the showdist() member function could be made const because

it doesn’t (or certainly shouldn’t!) modify any of the data in the object for

which it was called. It should simply display the data. Also, in ENGLRET,

the add_dist() function should not modify any of the data in the object for

which it was called. This object should simply be added to the object

passed as an argument, and the resulting sum should be returned. We’ve

modified the ENGLRET program to show how these two constant

functions look. Note that const is used in both the declaration and the

. Ahmed Hashim MohammedDr Class const OOP

definition of add_dist(). Here’s the listing for ENGCONST:

// engConst.cpp

// const member functions and const arguments to member functions

#include <iostream>

using namespace std;

//

class Distance //English Distance class

{

private:

int feet;

float inches;

public: //constructor (no args)

Distance() : feet(0), inches(0.0)

{ } //constructor (two args)

Distance(int ft, float in) : feet(ft), inches(in)

{ }

void getdist() //get length from user

{

cout << “\nEnter feet: “; cin >> feet;

cout << “Enter inches: “; cin >> inches;

}

void showdist() const //display distance

{ cout << feet << “\’-” << inches << ‘\”’; }

Distance add_dist(const Distance&) const; //add

};

//--

//add this distance to d2, return the sum

. Ahmed Hashim MohammedDr Class const OOP

Distance Distance::add_dist(const Distance& d2) const

{

Distance temp; //temporary variable

// feet = 0; //ERROR: can’t modify this

// d2.feet = 0; //ERROR: can’t modify d2

temp.inches = inches + d2.inches; //add the inches

if(temp.inches >= 12.0) //if total exceeds 12.0,

{ //then decrease inches

temp.inches -= 12.0; //by 12.0 and

temp.feet = 1; //increase feet

} //by 1

temp.feet += feet + d2.feet; //add the feet

return temp;

}

//

int main()

{

Distance dist1, dist3; //define two lengths

Distance dist2(11, 6.25); //define, initialize dist2

dist1.getdist(); //get dist1 from user

dist3 = dist1.add_dist(dist2); //dist3 = dist1 + dist2

//display all lengths

cout << “\ndist1 = “; dist1.showdist();

cout << “\ndist2 = “; dist2.showdist();

cout << “\ndist3 = “; dist3.showdist();

cout << endl;

return 0;

}

. Ahmed Hashim MohammedDr Class const OOP

Here, showdist() and add_dist() are both constant member functions. In

add_dist() we show in the first commented statement, feet = 0, that a

compiler error is generated if you attempt to modify any of the data in the

object for which this constant function was called.

We mentioned in Chapter 5 that if an argument is passed to an ordinary

function by reference, and you don’t want the function to modify it, the

argument should be made const in the function declaration (and

definition). This is true of member functions as well. In ENGCONST the

argument to add_dist() is passed by reference, and we want to make sure

that ENGCONST won’t modify this variable, which is dist2 in main().

Therefore we make the argument d2 to add_dist() const in both

declaration and definition. The second commented statement shows that

the compiler will flag as an error any attempt by add_dist() to modify any

member data of its argument dist2.

const Objects

In several example programs, we’ve seen that we can apply const to

variables of basic types such as int to keep them from being modified. In a

similar way, we can apply const to objects of classes. When an object is

declared as const, you can’t modify it. It follows that you can use only

const member functions with it, because they’re the only ones that

guarantee not to modify it. The CONSTOBJ program shows an example.

. Ahmed Hashim MohammedDr Class const OOP

// constObj.cpp

// constant Distance objects

#include <iostream>

using namespace std;

//

class Distance //English Distance class

{

private:

int feet;

float inches;

public: //2-arg constructor

Distance(int ft, float in) : feet(ft), inches(in)

{ }

void getdist() //user input; non-const func

{

cout << “\nEnter feet: “; cin >> feet;

cout << “Enter inches: “; cin >> inches;

}

void showdist() const //display distance; const func

{ cout << feet << “\’-” << inches << ‘\”’; }

};

//

int main()

{

const Distance football(300, 0);

// football.getdist(); //ERROR: getdist() not const

cout << “football = “;

football.showdist(); //OK

. Ahmed Hashim MohammedDr Class const OOP

cout << endl;

return 0;

}

A football field (for American-style football) is exactly 300 feet long. If

we were to use the length of a football field in a program, it would make

sense to make it const, because changing it would represent the end of the

world for football fans.

The CONSTOBJ program makes football a const variable. Now only

const functions, such as showdist(), can be called for this object. Non-

const functions, such as getdist(), which gives the object a new value

obtained from the user, are illegal. In this way the compiler enforces the

const value of football.

When you’re designing classes it’s a good idea to make const any function

that does not modify any of the data in its object. This allows the user of

the class to create const objects. These objects can use any const function,

but cannot use any non-const function. Remember, using const helps the

compiler to help you.

