Lecture 25: The Dispersion Parameter

Sometimes the exponential family is written in the form

yo — B(0)
o

where B(:) and C(-, ) are known functions, and the range of Y does not depend on 6 or ¢.
In this formulation, we call € the canonical parameter, and ¢ the dispersion parameter. If
the distribution is parameterized in terms of the mean of Y, u, so that 6 = g(u) for some
function g, then g(u) is the canonical link.
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If ¢ is known, then (1) agrees with the usual definition of the 1-parameter exponential family
in canonical form.

NOTE: For a random variable Y with distribution of the form (1),
4= E[Y] = B(6)
and
VarlY] = B'(0)6 = V(u)o.

Here V' is called the variance function. Thus, the variance function is equal to B”(6) for
exponential families.

NOTE: The dispersion parameter and variance function are unique only up to a constant,
since

Var[Y] = ¢V (u) = (co)[V(n)/c] = &'V (1)

for any constant ¢, where ¢’ is now considered the dispersion parameter, and V'(u) is now
considered the variance function. However, by convention, we would take both ¢ and V to
be positive, since they’re contributing to the variance, which is always positive.

Example: Normal distribution

The density of a random variable Y with N(u, 0?) distribution can be written as

o) = oy e
2
= exp {W — ;[y2/a2 + 10g(27r02)]} .

So, B(p) = p*/2 and C(y,0) = —1[y?/o? +log(2mo?)]. The dispersion parameter is 0. The
canonical parameter is p, and E[Y] = p and Var[Y] = 02. By convention (and in S-PLUS),
we take V() = 1 and ¢ = o2



Example: Gamma distribution

The density of a random variable Y with Gamma(a, v) distribution, 0 < a, v,y < 0o, can

be written as
v—1, v, —y«
Yy’ rale

fY(y) = F(l/)
= exp{—ya+vloga+ (v—1)logy —logI'(v)}

= exp {y(—a/y)l/—y[— loga] + (v —1)logy — log F(Z/)} .

Letting = —a/v and ¢ = 1/v,

y0 — [—1log(—0)]
¢

Therefore, the Gamma distribution is in the exponential family with B(6) = —log(—#) and
dispersion parameter ¢ = 1/v. This definition of ¢ is conventional, and is used by S-PLUS.
Since

fly) = exp{ ~log(¢)/6 + (1/6 — 1) logy — 1ogr<1/¢>}

p=EY] = B6) =
and 5
VarlY] = B'(6)0 = 2 = ou?,

this definition then implies that V(u) = p*.

The easiest way to find the canonical link for the Gamma distribution is to parameterize it
in terms of its mean. We can compute Thus,

—1) —log(n)
¢

fr(y) = exp {y ( —log(6)/6 + (1/¢ — 1) logy — log F<1/¢>} .

Therefore, the canonical link function is g(u) = —

T

Example: Poisson distribution

The distribution of a random variable Y with a Poisson(\) distribution can be written as

,)\)\y
) = =

= exp{ylogA — X\ —logy!}

B {ylogA—A | '}
= exp) = —logyl,.

So, the canonical parameter is log A. In this case, the dispersion parameter is 1. It is for this
reason that S-PLUS gives the message



(Dispersion Parameter for Poisson family taken to be 1 )

in the summary output when we fit a Poisson GLM.

Example: Binomial distribution

The distribution of a random variable Y with Binomial(n, p) distribution can be written as

fely) = ( " )pyu e

= exp {ylog <1fp> +nlog(l —p) +log< Z )}

_ eXp{ylog(lf]) +nlog(l — p) Hog( Z )}

1

So, the canonical parameter is log (1’%}0). Like in the Poisson case, in this case, the dispersion
parameter is also 1. It is for this reason that S-PLUS gives the message

(Dispersion Parameter for Binomial family taken to be 1 )

in the summary output when we fit a Binomial GLM.

Extending the GLM Framework to Allow for a Dispersion Parameter

In most situations, ¢ is unknown. In this case, the distribution (1) does not fit into the usual
GLM framework (where we assume that the distribution is in the 1-parameter exponential
family). However, it turns out that we can still use the GLM framework to model observations
with distribution (1). In particular, we treat ¢ as known and common to all observations.
Then, we let p (and hence 6) vary among observations in the usual way, i.e. for observations
Yy,...,Y,, we assume that

g(pi) =D xi;3;.
j=1

The difference between this model and usual GLMs is that, in addition to estimating the
B;’s, we will now need to estimate ¢ as well. We can obtain such an estimate using the
Pearson chi-squared statistic and its asymptotic properties.

Estimating the Dispersion Parameter

We have defined the Pearson chi-squared statistic in the special case where Y; has a Poisson
or binomial distribution. In general, this statistic is defined as

n Y. — /))2
X2 — ( K2 x 1 7
; V(j:)



where Var[Y;] =V (u;)¢.

Exercise: Check that this definition is consistent with that given for Poisson or binomial
data.

The scaled Pearson chi-squared statistic is defined as

X? = X—Q.
9
It turns out that, if the model is specified correctly,

2 2
Xs ~ Xn—p

asymptotically, where n is the sample size and p is the number of unknown regression coef-
ficients (the f;’s) in the model.

Since the mean of a Xi—p random variable is n — p, we can use the approximation X? ~ n—p,
and hence the estimator

XQ
n—p

>

Note that this is not the MLE of ¢ (it is actually a moment estimator). However, it has
some nice properties not shared by the MLE.

Example: Normal distribution (cont.)

For independent observations Yy, ..., Y, with Y; ~N(u;, 0?),

Var[Yi] = V(u)¢

= 102

so V(u;) =1 and

n

X2 = 30— i)’

=1

Therefore,

~

¢ _ 6'2 — ?:1(3/; - ﬂl)Q

n—p
This is the usual unbiased estimator of o2. (The MLE, which has n rather than n — p in the
denominator, is biased.)

Example: Gamma distribution (cont.)




For independent observations Y7, ..

so V(u;) = p? and

Therefore,

by

., Y, with Y; ~Gamma(6;,v),

Varlyj] = B'(6)¢
i
92
= o



