
Lecture 25: The Dispersion Parameter

Sometimes the exponential family is written in the form

fY (y; θ, φ) = exp

{
yθ −B(θ)

φ
+ C(y, φ)

}
, (1)

where B(·) and C(·, ·) are known functions, and the range of Y does not depend on θ or φ.
In this formulation, we call θ the canonical parameter, and φ the dispersion parameter. If
the distribution is parameterized in terms of the mean of Y , µ, so that θ ≡ g(µ) for some
function g, then g(µ) is the canonical link.

If φ is known, then (1) agrees with the usual definition of the 1-parameter exponential family
in canonical form.

NOTE: For a random variable Y with distribution of the form (1),

µ ≡ E[Y ] = B′(θ)

and
Var[Y ] = B′′(θ)φ ≡ V (µ)φ.

Here V is called the variance function. Thus, the variance function is equal to B′′(θ) for
exponential families.

NOTE: The dispersion parameter and variance function are unique only up to a constant,
since

Var[Y ] = φV (µ) = (cφ)[V (µ)/c] = φ′V ′(µ)

for any constant c, where φ′ is now considered the dispersion parameter, and V ′(µ) is now
considered the variance function. However, by convention, we would take both φ and V to
be positive, since they’re contributing to the variance, which is always positive.

Example: Normal distribution

The density of a random variable Y with N(µ, σ2) distribution can be written as

fY (y) =
1√

2πσ2
e−

(y−µ)2

2σ2

= exp

{
yµ− µ2/2

σ2
− 1

2
[y2/σ2 + log(2πσ2)]

}
.

So, B(µ) = µ2/2 and C(y, σ) = −1
2
[y2/σ2 +log(2πσ2)]. The dispersion parameter is σ2. The

canonical parameter is µ, and E[Y ] = µ and Var[Y ] = σ2. By convention (and in S-PLUS),
we take V (µ) = 1 and φ = σ2.
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Example: Gamma distribution

The density of a random variable Y with Gamma(α, ν) distribution, 0 < α, ν, y < ∞, can
be written as

fY (y) =
yν−1ανe−yα

Γ(ν)

= exp {−yα + ν log α + (ν − 1) log y − log Γ(ν)}
= exp

{
y(−α/ν)− [− log α]

1/ν
+ (ν − 1) log y − log Γ(ν)

}
.

Letting θ ≡ −α/ν and φ ≡ 1/ν,

fY (y) = exp

{
yθ − [− log(−θ)]

φ
− log(φ)/φ + (1/φ− 1) log y − log Γ(1/φ)

}

Therefore, the Gamma distribution is in the exponential family with B(θ) = − log(−θ) and
dispersion parameter φ ≡ 1/ν. This definition of φ is conventional, and is used by S-PLUS.
Since

µ ≡ E[Y ] = B′(θ) = −1

θ

and

Var[Y ] = B′′(θ)φ =
φ

θ2
= φµ2,

this definition then implies that V (µ) = µ2.

The easiest way to find the canonical link for the Gamma distribution is to parameterize it
in terms of its mean. We can compute Thus,

fY (y) = exp





y
(
− 1

µ

)
− log(µ)

φ
− log(φ)/φ + (1/φ− 1) log y − log Γ(1/φ)



 .

Therefore, the canonical link function is g(µ) = − 1
µ
.

Example: Poisson distribution

The distribution of a random variable Y with a Poisson(λ) distribution can be written as

fY (y) =
e−λλy

y!

= exp {y log λ− λ− log y!}
= exp

{
y log λ− λ

1
− log y!

}
.

So, the canonical parameter is log λ. In this case, the dispersion parameter is 1. It is for this
reason that S-PLUS gives the message
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(Dispersion Parameter for Poisson family taken to be 1 )

in the summary output when we fit a Poisson GLM.

Example: Binomial distribution

The distribution of a random variable Y with Binomial(n, p) distribution can be written as

fY (y) =

(
n
y

)
py(1− p)n−y

= exp

{
y log

(
p

1− p

)
+ n log(1− p) + log

(
n
y

)}

= exp





y log
(

p
1−p

)
+ n log(1− p)

1
+ log

(
n
y

)

 .

So, the canonical parameter is log
(

p
1−p

)
. Like in the Poisson case, in this case, the dispersion

parameter is also 1. It is for this reason that S-PLUS gives the message

(Dispersion Parameter for Binomial family taken to be 1 )

in the summary output when we fit a Binomial GLM.

Extending the GLM Framework to Allow for a Dispersion Parameter

In most situations, φ is unknown. In this case, the distribution (1) does not fit into the usual
GLM framework (where we assume that the distribution is in the 1-parameter exponential
family). However, it turns out that we can still use the GLM framework to model observations
with distribution (1). In particular, we treat φ as known and common to all observations.
Then, we let µ (and hence θ) vary among observations in the usual way, i.e. for observations
Y1, . . . , Yn, we assume that

g(µi) =
p∑

j=1

xijβj.

The difference between this model and usual GLMs is that, in addition to estimating the
βj’s, we will now need to estimate φ as well. We can obtain such an estimate using the
Pearson chi-squared statistic and its asymptotic properties.

Estimating the Dispersion Parameter

We have defined the Pearson chi-squared statistic in the special case where Yi has a Poisson
or binomial distribution. In general, this statistic is defined as

X2 =
n∑

i=1

(Yi − µ̂i)
2

V (µ̂i)
,
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where Var[Yi] = V (µi)φ.

Exercise: Check that this definition is consistent with that given for Poisson or binomial
data.

The scaled Pearson chi-squared statistic is defined as

X2
s =

X2

φ
.

It turns out that, if the model is specified correctly,

X2
s ∼ χ2

n−p

asymptotically, where n is the sample size and p is the number of unknown regression coef-
ficients (the βj’s) in the model.

Since the mean of a χ2
n−p random variable is n−p, we can use the approximation X2

s ≈ n−p,
and hence the estimator

φ̂ =
X2

n− p
.

Note that this is not the MLE of φ (it is actually a moment estimator). However, it has
some nice properties not shared by the MLE.

Example: Normal distribution (cont.)

For independent observations Y1, . . . , Yn with Yi ∼N(µi, σ
2),

Var[Yi] = V (µi)φ

≡ 1 · σ2

so V (µi) ≡ 1 and

X2 =
n∑

i=1

(Yi − µ̂i)
2.

Therefore,

φ̂ = σ̂2 =

∑n
i=1(Yi − µ̂i)

2

n− p
.

This is the usual unbiased estimator of σ2. (The MLE, which has n rather than n− p in the
denominator, is biased.)

Example: Gamma distribution (cont.)
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For independent observations Y1, . . . , Yn with Yi ∼Gamma(θi, ν),

Var[Yi] = B′′(θ)φ

=
φ

θ2

≡ µ2
i φ

so V (µi) ≡ µ2
i and

X2 =
n∑

i=1

(Yi − µ̂i)
2

µ̂2
i

.

Therefore,

φ̂ =
n∑

i=1

(Yi − µ̂i)
2

µ̂2
i (n− p)

.

Since moment estimators also have the invariance property (like MLEs), we can estimate ν
by

ν̂ =
1

φ̂
.
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