

Lecture 25: The Dispersion Parameter

Sometimes the exponential family is written in the form

$$f_Y(y; \theta, \phi) = \exp \left\{ \frac{y\theta - B(\theta)}{\phi} + C(y, \phi) \right\}, \quad (1)$$

where $B(\cdot)$ and $C(\cdot, \cdot)$ are known functions, and the range of Y does not depend on θ or ϕ . In this formulation, we call θ the *canonical parameter*, and ϕ the *dispersion parameter*. If the distribution is parameterized in terms of the mean of Y , μ , so that $\theta \equiv g(\mu)$ for some function g , then $g(\mu)$ is the canonical link.

If ϕ is known, then (1) agrees with the usual definition of the 1-parameter exponential family in canonical form.

NOTE: For a random variable Y with distribution of the form (1),

$$\mu \equiv \mathbb{E}[Y] = B'(\theta)$$

and

$$\text{Var}[Y] = B''(\theta)\phi \equiv V(\mu)\phi.$$

Here V is called the *variance function*. Thus, the variance function is equal to $B''(\theta)$ for exponential families.

NOTE: The dispersion parameter and variance function are unique only up to a constant, since

$$\text{Var}[Y] = \phi V(\mu) = (c\phi)[V(\mu)/c] = \phi' V'(\mu)$$

for any constant c , where ϕ' is now considered the dispersion parameter, and $V'(\mu)$ is now considered the variance function. However, by convention, we would take both ϕ and V to be positive, since they're contributing to the variance, which is always positive.

Example: Normal distribution

The density of a random variable Y with $N(\mu, \sigma^2)$ distribution can be written as

$$\begin{aligned} f_Y(y) &= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}} \\ &= \exp \left\{ \frac{y\mu - \mu^2/2}{\sigma^2} - \frac{1}{2} [y^2/\sigma^2 + \log(2\pi\sigma^2)] \right\}. \end{aligned}$$

So, $B(\mu) = \mu^2/2$ and $C(y, \sigma) = -\frac{1}{2}[y^2/\sigma^2 + \log(2\pi\sigma^2)]$. The dispersion parameter is σ^2 . The canonical parameter is μ , and $\mathbb{E}[Y] = \mu$ and $\text{Var}[Y] = \sigma^2$. By convention (and in S-PLUS), we take $V(\mu) = 1$ and $\phi = \sigma^2$.

Example: Gamma distribution

The density of a random variable Y with $\text{Gamma}(\alpha, \nu)$ distribution, $0 < \alpha, \nu, y < \infty$, can be written as

$$\begin{aligned} f_Y(y) &= \frac{y^{\nu-1} \alpha^\nu e^{-y\alpha}}{\Gamma(\nu)} \\ &= \exp \{-y\alpha + \nu \log \alpha + (\nu - 1) \log y - \log \Gamma(\nu)\} \\ &= \exp \left\{ \frac{y(-\alpha/\nu) - [-\log \alpha]}{1/\nu} + (\nu - 1) \log y - \log \Gamma(\nu) \right\}. \end{aligned}$$

Letting $\theta \equiv -\alpha/\nu$ and $\phi \equiv 1/\nu$,

$$f_Y(y) = \exp \left\{ \frac{y\theta - [-\log(-\theta)]}{\phi} - \log(\phi)/\phi + (1/\phi - 1) \log y - \log \Gamma(1/\phi) \right\}$$

Therefore, the Gamma distribution is in the exponential family with $B(\theta) = -\log(-\theta)$ and dispersion parameter $\phi \equiv 1/\nu$. This definition of ϕ is conventional, and is used by S-PLUS. Since

$$\mu \equiv \text{E}[Y] = B'(\theta) = -\frac{1}{\theta}$$

and

$$\text{Var}[Y] = B''(\theta)\phi = \frac{\phi}{\theta^2} = \phi\mu^2,$$

this definition then implies that $V(\mu) = \mu^2$.

The easiest way to find the canonical link for the Gamma distribution is to parameterize it in terms of its mean. We can compute Thus,

$$f_Y(y) = \exp \left\{ \frac{y \left(-\frac{1}{\mu} \right) - \log(\mu)}{\phi} - \log(\phi)/\phi + (1/\phi - 1) \log y - \log \Gamma(1/\phi) \right\}.$$

Therefore, the canonical link function is $g(\mu) = -\frac{1}{\mu}$.

Example: Poisson distribution

The distribution of a random variable Y with a $\text{Poisson}(\lambda)$ distribution can be written as

$$\begin{aligned} f_Y(y) &= \frac{e^{-\lambda} \lambda^y}{y!} \\ &= \exp \{y \log \lambda - \lambda - \log y!\} \\ &= \exp \left\{ \frac{y \log \lambda - \lambda}{1} - \log y! \right\}. \end{aligned}$$

So, the canonical parameter is $\log \lambda$. In this case, the dispersion parameter is 1. It is for this reason that S-PLUS gives the message

(Dispersion Parameter for Poisson family taken to be 1)

in the summary output when we fit a Poisson GLM.

Example: Binomial distribution

The distribution of a random variable Y with $\text{Binomial}(n, p)$ distribution can be written as

$$\begin{aligned} f_Y(y) &= \binom{n}{y} p^y (1-p)^{n-y} \\ &= \exp \left\{ y \log \left(\frac{p}{1-p} \right) + n \log(1-p) + \log \left(\binom{n}{y} \right) \right\} \\ &= \exp \left\{ \frac{y \log \left(\frac{p}{1-p} \right) + n \log(1-p)}{1} + \log \left(\binom{n}{y} \right) \right\}. \end{aligned}$$

So, the canonical parameter is $\log \left(\frac{p}{1-p} \right)$. Like in the Poisson case, in this case, the dispersion parameter is also 1. It is for this reason that S-PLUS gives the message

(Dispersion Parameter for Binomial family taken to be 1)

in the summary output when we fit a Binomial GLM.

Extending the GLM Framework to Allow for a Dispersion Parameter

In most situations, ϕ is unknown. In this case, the distribution (1) does not fit into the usual GLM framework (where we assume that the distribution is in the 1-parameter exponential family). However, it turns out that we can still use the GLM framework to model observations with distribution (1). In particular, we treat ϕ as known and common to all observations. Then, we let μ (and hence θ) vary among observations in the usual way, i.e. for observations Y_1, \dots, Y_n , we assume that

$$g(\mu_i) = \sum_{j=1}^p x_{ij} \beta_j.$$

The difference between this model and usual GLMs is that, in addition to estimating the β_j 's, we will now need to estimate ϕ as well. We can obtain such an estimate using the Pearson chi-squared statistic and its asymptotic properties.

Estimating the Dispersion Parameter

We have defined the Pearson chi-squared statistic in the special case where Y_i has a Poisson or binomial distribution. In general, this statistic is defined as

$$X^2 = \sum_{i=1}^n \frac{(Y_i - \hat{\mu}_i)^2}{V(\hat{\mu}_i)},$$

where $\text{Var}[Y_i] = V(\mu_i)\phi$.

Exercise: Check that this definition is consistent with that given for Poisson or binomial data.

The *scaled* Pearson chi-squared statistic is defined as

$$X_s^2 = \frac{X^2}{\phi}.$$

It turns out that, if the model is specified correctly,

$$X_s^2 \sim \chi_{n-p}^2$$

asymptotically, where n is the sample size and p is the number of unknown regression coefficients (the β_j 's) in the model.

Since the mean of a χ_{n-p}^2 random variable is $n-p$, we can use the approximation $X_s^2 \approx n-p$, and hence the estimator

$$\hat{\phi} = \frac{X^2}{n-p}.$$

Note that this is *not* the MLE of ϕ (it is actually a *moment estimator*). However, it has some nice properties not shared by the MLE.

Example: Normal distribution (cont.)

For independent observations Y_1, \dots, Y_n with $Y_i \sim N(\mu_i, \sigma^2)$,

$$\begin{aligned} \text{Var}[Y_i] &= V(\mu_i)\phi \\ &\equiv 1 \cdot \sigma^2 \end{aligned}$$

so $V(\mu_i) \equiv 1$ and

$$X^2 = \sum_{i=1}^n (Y_i - \hat{\mu}_i)^2.$$

Therefore,

$$\hat{\phi} = \hat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{\mu}_i)^2}{n-p}.$$

This is the usual unbiased estimator of σ^2 . (The MLE, which has n rather than $n-p$ in the denominator, is biased.)

Example: Gamma distribution (cont.)

For independent observations Y_1, \dots, Y_n with $Y_i \sim \text{Gamma}(\theta_i, \nu)$,

$$\begin{aligned}\text{Var}[Y_i] &= B''(\theta)\phi \\ &= \frac{\phi}{\theta^2} \\ &\equiv \mu_i^2 \phi\end{aligned}$$

so $V(\mu_i) \equiv \mu_i^2$ and

$$X^2 = \sum_{i=1}^n \frac{(Y_i - \hat{\mu}_i)^2}{\hat{\mu}_i^2}.$$

Therefore,

$$\hat{\phi} = \sum_{i=1}^n \frac{(Y_i - \hat{\mu}_i)^2}{\hat{\mu}_i^2(n-p)}.$$

Since moment estimators also have the invariance property (like MLEs), we can estimate ν by

$$\hat{\nu} = \frac{1}{\hat{\phi}}.$$