
OOP Overloading Unary Operators Dr. Ahmed Hashim Mohammed

1 | P a g e

Operator Overloading

Operator overloading is one of the most exciting features of object oriented

programming. It can transform complex, obscure program listings into

intuitively obvious ones. For example, statements like

d3.addobjects(d1, d2);

or the similar but equally obscure

d3 = d1.addobjects(d2);

can be changed to the much more readable

d3 = d1 + d2;

The rather forbidding term operator overloading refers to giving the

normal C++ operators, such as +, *, <=, and +=, additional meanings

when they are applied to user-defined data types.

Normally

a = b + c;

works only with basic types such as int and float, and attempting to apply

it when a, b, and c are objects of a user-defined class will cause

complaints from the compiler. However, using overloading, you can make

this statement legal even when a, b, and c are user-defined types.

In effect, operator overloading gives you the opportunity to redefine the

C++ language. If you find yourself limited by the way the C++ operators

work, you can change them to do whatever you want. By using classes to

create new kinds of variables, and operator overloading to create new

definitions for operators, you can extend C++ to be, in many ways, a new

language of your own design.

Overloading Unary Operators

Let’s start off by overloading a unary operator. As you may recall from

OOP Overloading Unary Operators Dr. Ahmed Hashim Mohammed

2 | P a g e

Chapter 2, unary operators act on only one operand. (An operand is simply

a variable acted on by an operator.)

Examples of unary operators are the increment and decrement operators

++ and --, and the unary minus, as in -33.

In the COUNTER example in Chapter 6, “Objects and Classes,” we

created a class Counter to keep track of a count. Objects of that class were

incremented by calling a member function:

c1.inc_count();

That did the job, but the listing would have been more readable if we

could have used the increment operator ++ instead:

++c1;

All dyed-in-the-wool C++ (and C) programmers would guess immediately

that this expression increments c1.

Let’s rewrite COUNTER to make this possible. Here’s the listing for

COUNTPP1:

// countpp1.cpp

// increment counter variable with ++ operator

#include <iostream>

class Counter

{

private:

unsigned int count; //count

OOP Overloading Unary Operators Dr. Ahmed Hashim Mohammed

3 | P a g e

public:

Counter() : count(0) //constructor

{ }

unsigned int get_count() //return count

{ return count; }

void operator ++ () //increment (prefix)

{

++count;

}

};

//

int main()

{

Counter c1, c2; //define and initialize

cout << “\nc1=” << c1.get_count(); //display

cout << “\nc2=” << c2.get_count();

++c1; //increment c1

++c2; //increment c2

++c2; //increment c2

cout << “\nc1=” << c1.get_count(); //display again

cout << “\nc2=” << c2.get_count() << endl;

return 0;

}

In this program we create two objects of class Counter: c1 and c2. The

counts in the objects are displayed; they are initially 0. Then, using the

overloaded ++ operator, we increment c1 once and c2 twice, and display

the resulting values. Here’s the program’s output:

OOP Overloading Unary Operators Dr. Ahmed Hashim Mohammed

4 | P a g e

c1=0 ← counts are initially 0

c2=0

c1=1 ← incremented once

c2=2 ← incremented twice

The statements responsible for these operations are

++c1;

++c2;

++c2;

The ++ operator is applied once to c1 and twice to c2. We use prefix

notation in this example; we’ll explore postfix later.

The operator Keyword

How do we teach a normal C++ operator to act on a user-defined operand?

The keyword operator is used to overload the ++ operator in this

declarator:

void operator ++ ()

The return type (void in this case) comes first, followed by the keyword

operator, followed by the operator itself (++), and finally the argument list

enclosed in parentheses (which are empty here). This declarator syntax

tells the compiler to call this member function whenever the ++ operator is

encountered, provided the operand (the variable operated on by the ++) is

of type Counter.

Operator Arguments

In main() the ++ operator is applied to a specific object, as in the

expression ++c1. Yet operator++() takes no arguments. What does this

operator increment? It increments the count data in the object of which it

is a member. Since member functions can always access the particular

OOP Overloading Unary Operators Dr. Ahmed Hashim Mohammed

5 | P a g e

object for which they’ve been invoked, this operator requires no

arguments. This is shown in Figure 8.1.

Operator Return Values

The operator++() function in the COUNTPP1 program has a subtle defect.

You will discover it if you use a statement like this in main():

c1 = ++c2;

The compiler will complain. Why? Because we have defined the ++

operator to have a return type of void in the operator++() function, while

in the assignment statement it is being asked to return a variable of type

Counter. That is, the compiler is being asked to return whatever

value c2 has after being operated on by the ++ operator, and assign this

value to c1. So as defined in COUNTPP1, we can’t use ++ to increment

Counter objects in assignments; it must always stand alone with its

operand. of course the normal ++ operator, applied to basic data

types such as int, would not have this problem.

OOP Overloading Unary Operators Dr. Ahmed Hashim Mohammed

6 | P a g e

To make it possible to use our homemade operator++() in assignment

expressions, we must provide a way for it to return a value. The next

program, COUNTPP2, does just that.

// countpp2.cpp

// increment counter variable with ++ operator, return value

#include <iostream>

class Counter

{

private:

unsigned int count; //count

public:

Counter() : count(0) //constructor

{ }

unsigned int get_count() //return count

{ return count; }

Counter operator ++ () //increment count

{

++count; //increment count

Counter temp; //make a temporary Counter

temp.count = count; //give it same value as this obj

return temp; //return the copy

}

};

int main()

{

Counter c1, c2; //c1=0, c2=0

cout << “\nc1=” << c1.get_count(); //display

OOP Overloading Unary Operators Dr. Ahmed Hashim Mohammed

7 | P a g e

cout << “\nc2=” << c2.get_count();

++c1; //c1=1

c2 = ++c1; //c1=2, c2=2

cout << “\nc1=” << c1.get_count(); //display again

cout << “\nc2=” << c2.get_count() << endl;

return 0;

}

Here the operator++() function creates a new object of type Counter,

called temp, to use as a return value. It increments the count data in its

own object as before, then creates the new temp object and assigns count

in the new object the same value as in its own object. Finally, it returns the

temp object. This has the desired effect. Expressions like

++c1 now return a value, so they can be used in other expressions, such as

c2 = ++c1;

as shown in main(), where the value returned from c1++ is assigned to c2.

The output from this program is

c1=0

c2=0

c1=2

c2=2

