
. Ahmed Hashim MohammedDr Overloading Binary Operators OOP

Postfix Notation

So far we’ve shown the increment operator used only in its prefix form.

++c1

What about postfix, where the variable is incremented after its value is

used in the expression?

c1++ To make both versions of the increment operator work, we define

two overloaded ++ operators, as shown in the POSTFIX program:

// postfix.cpp

// overloaded ++ operator in both prefix and postfix

#include <iostream>

class Counter

{

private:

unsigned int count; //count

public:

Counter() : count(0) //constructor no args

{ }

Counter(int c) : count(c) //constructor, one arg

{ }

unsigned int get_count() const //return count

{ return count; }

Counter operator ++ () //increment count (prefix)

{ //increment count, then return

return Counter(++count); //an unnamed temporary object

} //initialized to this count

Counter operator ++ (int) //increment count (postfix)

. Ahmed Hashim MohammedDr Overloading Binary Operators OOP

{ //return an unnamed temporary

return Counter(count++); //object initialized to this

} //count, then increment count

};

//

int main()

{

Counter c1, c2; //c1=0, c2=0

cout << “\nc1=” << c1.get_count(); //display

cout << “\nc2=” << c2.get_count();

++c1; //c1=1

c2 = ++c1; //c1=2, c2=2 (prefix)

cout << “\nc1=” << c1.get_count(); //display

cout << “\nc2=” << c2.get_count();

c2 = c1++; //c1=3, c2=2 (postfix)

cout << “\nc1=” << c1.get_count(); //display again

cout << “\nc2=” << c2.get_count() << endl;

return 0;

}

Now there are two different declarators for overloading the ++ operator.

The one we’ve seen before, for prefix notation, is

Counter operator ++ ()

The new one, for postfix notation, is

Counter operator ++ (int)

The only difference is the int in the parentheses. This int isn’t really an

argument, and it doesn’t mean integer. It’s simply a signal to the compiler

. Ahmed Hashim MohammedDr Overloading Binary Operators OOP

to create the postfix version of the operator. The designers of C++ are fond

of recycling existing operators and keywords to play multiple roles, and

int is the one they chose to indicate postfix. (Well, can you think of a

better syntax?) Here’s the output from the program:

c1=0

c2=0

c1=2

c2=2

c1=3

c2=2

We saw the first four of these output lines in COUNTPP2 and

COUNTPP3. But in the last two lines we see the results of the statement

c2=c1++;

Here, c1 is incremented to 3, but c2 is assigned the value of c1 before it is

incremented, so c2 retains the value 2.

Of course, you can use this same approach with the decrement operator (--

).

Overloading Binary Operators

Binary operators can be overloaded just as easily as unary operators. We’ll

look at examples that overload arithmetic operators, comparison operators,

and arithmetic assignment operators.

Arithmetic Operators

In the ENGLCON program in Chapter 6 we showed how two English

Distance objects could be added using a member function add_dist():

dist3.add_dist(dist1, dist2);

By overloading the + operator we can reduce this dense-looking

. Ahmed Hashim MohammedDr Overloading Binary Operators OOP

expression to dist3 = dist1 + dist2;

Here’s the listing for ENGLPLUS, which does just that:

// englplus.cpp

// overloaded ‘+’ operator adds two Distances

#include <iostream>

class Distance //English Distance class

{

private:

int feet;

float inches;

public: //constructor (no args)

Distance() : feet(0), inches(0.0)

{ } //constructor (two args)

Distance(int ft, float in) : feet(ft), inches(in)

{ }

void getdist() //get length from user

{

cout << “\nEnter feet: “; cin >> feet;

cout << “Enter inches: “; cin >> inches;

}

void showdist() const //display distance

{ cout << feet << “\’-” << inches << ‘\”’; }

Distance operator + (Distance) const; //add 2 distances

};

//--

//add this distance to d2

Distance Distance::operator + (Distance d2) const //return sum

{

. Ahmed Hashim MohammedDr Overloading Binary Operators OOP

int f = feet + d2.feet; //add the feet

float i = inches + d2.inches; //add the inches

if(i >= 12.0) //if total exceeds 12.0,

{ //then decrease inches

i -= 12.0; //by 12.0 and

f++; //increase feet by 1

} //return a temporary Distance

return Distance(f,i); //initialized to sum

}

//

int main()

{

Distance dist1, dist3, dist4; //define distances

dist1.getdist(); //get dist1 from user

Distance dist2(11, 6.25); //define, initialize dist2

dist3 = dist1 + dist2; //single ‘+’ operator

dist4 = dist1 + dist2 + dist3; //multiple ‘+’ operators

//display all lengths

cout << “dist1 = “; dist1.showdist(); cout << endl;

cout << “dist2 = “; dist2.showdist(); cout << endl;

cout << “dist3 = “; dist3.showdist(); cout << endl;

cout << “dist4 = “; dist4.showdist(); cout << endl;

return 0;

}

To show that the result of an addition can be used in another addition as

well as in an assignment, another addition is performed in main(). We add

. Ahmed Hashim MohammedDr Overloading Binary Operators OOP

dist1, dist2, and dist3 to obtain dist4 (which should be double the value of

dist3), in the statement dist4 = dist1 + dist2 + dist3;

Here’s the output from the program:

Enter feet: 10

Enter inches: 6.5

dist1 = 10’-6.5” ← from user

dist2 = 11’-6.25” ← initialized in program

dist3 = 22’-0.75” ← dist1+dist2

dist4 = 44’-1.5” ← dist1+dist2+dist3

In class Distance the declaration for the operator+() function looks like

this:

Distance operator + (Distance);

This function has a return type of Distance, and takes one argument of

type Distance.

In expressions like

dist3 = dist1 + dist2;

it’s important to understand how the return value and arguments of the

operator relate to the objects. When the compiler sees this expression it

looks at the argument types, and finding only type Distance, it realizes it

must use the Distance member function operator+(). But what does this

function use as its argument—dist1 or dist2? And doesn’t it need two

arguments, since there are two numbers to be added? Here’s the key: The

argument on the left side of the operator (dist1 in this case) is the object of

which the operator is a member. The object on the right side of the

operator (dist2) must be furnished as an argument to the operator. The

. Ahmed Hashim MohammedDr Overloading Binary Operators OOP

operator returns a value, which can be assigned or used in other ways; in

this case it is assigned to dist3. Figure 8.2 shows how this looks.

In the operator+() function, the left operand is accessed directly—since

this is the object of which the operator is a member—using feet and

inches. The right operand is accessed as the function’s argument, as

d2.feet and d2.inches.

We can generalize and say that an overloaded operator always requires

one less argument than its number of operands, since one operand is the

object of which the operator is a member.

That’s why unary operators require no arguments. (This rule does not

apply to friend functions and operators, C++ features we’ll discuss in

Chapter 11.)

. Ahmed Hashim MohammedDr Overloading Binary Operators OOP

To calculate the return value of operator+() in ENGLPLUS, we first add

the feet and inches from the two operands (adjusting for a carry if

necessary). The resulting values, f and i, are then used to initialize a

nameless Distance object, which is returned in the statement

return Distance(f, i);

This is similar to the arrangement used in COUNTPP3, except that the

constructor takes two arguments instead of one. The statement

dist3 = dist1 + dist2;

in main() then assigns the value of the nameless Distance object to dist3.

Compare this intuitively obvious statement with the use of a function call

to perform the same task, as in the ENGLCON example in Chapter 6.

Similar functions could be created to overload other operators in the

Distance class, so you could subtract, multiply, and divide objects of this

class in natural-looking ways.

