
OOP Data Conversion Dr. Ahmed Hashim Mohammed

Data Conversion

You already know that the = operator will assign a value from one

variable to another, in statements like intvar1 = intvar2; where intvar1 and

intvar2 are integer variables. You may also have noticed that = assigns the

value of one user-defined object to another, provided they are of the same

type, in statements like dist3 = dist1 + dist2;

where the result of the addition, which is type Distance, is assigned to

another object of type Distance, dist3. Normally, when the value of one

object is assigned to another of the same type, the values of all the

member data items are simply copied into the new object. The compiler

doesn’t need any special instructions to use = for the assignment of user-

defined objects such as Distance objects.

Thus, assignments between types, whether they are basic types or user-

defined types, are handled by the compiler with no effort on our part,

provided that the same data type is used on both sides of the equal sign.

But what happens when the variables on different sides of the = are of

different types? This is a more thorny question, to which we will devote

the balance of this chapter. We’ll first review how the compiler handles

the conversion of basic types, which it does automatically. Then we’ll

explore several situations where the compiler doesn’t handle things

automatically and we need to tell it what to do. These include conversions

between basic types and user-defined types, and conversions between

different user-defined types.

You might think it represents poor programming practice to convert

routinely from one type to another. After all, languages such as Pascal go

to considerable trouble to keep you from doing such conversions.

However, the philosophy in C++ (and C) is that the flexibility provided by

OOP Data Conversion Dr. Ahmed Hashim Mohammed

allowing conversions outweighs the dangers. This is a controversial issue;

we’ll return to it at the end of this chapter.

Conversions Between Basic Types

When we write a statement like intvar = floatvar; where intvar is of type

int and floatvar is of type float, we are assuming that the compiler will call

a special routine to convert the value of floatvar, which is expressed in

floating-point format, to an integer format so that it can be assigned to

intvar. There are of course many such conversions: from float to double,

char to float, and so on. Each such conversion has its own routine, built

into the compiler and called up when the data types on different sides of

the equal sign so dictate. We say such conversions are implicit because

they aren’t apparent in the listing. Sometimes we want to force the

compiler to convert one type to another. To do this we use the cast

operator. For instance, to convert float to int, we can say

intvar = static_cast<int>(floatvar);

Casting provides explicit conversion: It’s obvious in the listing that

static_cast<int>() is intended to convert from float to int. However, such

explicit conversions use the same built-in routines as implicit conversions.

Conversions Between Objects and Basic Types

When we want to convert between user-defined data types and basic types,

we can’t rely on built-in conversion routines, since the compiler doesn’t

know anything about user-defined types besides what we tell it. Instead,

we must write these routines ourselves. Our next example shows how to

convert between a basic type and a user-defined type. In this example the

user-defined type is (surprise!) the English Distance class from previous

examples, and the basic type is float, which we use to represent meters, a

unit of length in the metric measurement system. The example shows

OOP Data Conversion Dr. Ahmed Hashim Mohammed

conversion both from Distance to float, and from float to Distance. Here’s

the listing for ENGLCONV:

// englconv.cpp

// conversions: Distance to meters, meters to Distance

#include <iostream>

class Distance //English Distance class

{

private:

const float MTF; //meters to feet

int feet;

float inches;

public: //constructor (no args)

Distance() : feet(0), inches(0.0), MTF(3.280833F)

{ } //constructor (one arg)

Distance(float meters) : MTF(3.280833F)

{ //convert meters to Distance

float fltfeet = MTF * meters; //convert to float feet

feet = int(fltfeet); //feet is integer part

inches = 12*(fltfeet-feet); //inches is what’s left

} //constructor (two args)

Distance(int ft, float in) : feet(ft),inches(in), MTF(3.280833F)

{ }

void getdist() //get length from user

{

cout << “\nEnter feet: “; cin >> feet;

cout << “Enter inches: “; cin >> inches;

}

void showdist() const //display distance

OOP Data Conversion Dr. Ahmed Hashim Mohammed

{ cout << feet << “\’-” << inches << ‘\”’; }

operator float() const //conversion operator

{ //converts Distance to meters

float fracfeet = inches/12; //convert the inches

fracfeet += static_cast<float>(feet); //add the feet

return fracfeet/MTF; //convert to meters

}

};

//

int main()

{

float mtrs;

Distance dist1 = 2.35F; //uses 1-arg constructor to

//convert meters to Distance

cout << “\ndist1 = “; dist1.showdist();

mtrs = static_cast<float>(dist1); //uses conversion operator

//for Distance to meters

cout << “\ndist1 = “ << mtrs << “ meters\n”;

Distance dist2(5, 10.25); //uses 2-arg constructor

mtrs = dist2; //also uses conversion op

cout << “\ndist2 = “ << mtrs << “ meters\n”;

// dist2 = mtrs; //error, = won’t convert

return 0;

}

In main() the program first converts a fixed float quantity—2.35,

representing meters—to feet and inches, using the one-argument

OOP Data Conversion Dr. Ahmed Hashim Mohammed

constructor:

Distance dist1 = 2.35F;

Going in the other direction, it converts a Distance to meters in the

statements mtrs = static_cast<float>(dist2); and mtrs = dist2;

Here’s the output:

dist1 = 7’-8.51949” ← this is 2.35 meters

dist1 = 2.35 meters ← this is 7’–8.51949”

dist2 = 1.78435 meters ← this is 5’–10.25”

We’ve seen how conversions are performed using simple assignment

statements in main().

Now let’s see what goes on behind the scenes, in the Distance member

functions. Converting a user-defined type to a basic type requires a

different approach than converting a basic type to a user-defined type.

We’ll see how both types of conversions are carried out in ENGLCONV.

From Basic to User-Defined

To go from a basic type—float in this case—to a user-defined type such as

Distance, we use a constructor with one argument. These are sometimes

called conversion constructors. Here’s how this constructor looks in

ENGLCONV:

Distance(float meters)

{

float fltfeet = MTF * meters;

feet = int(fltfeet);

inches = 12 * (fltfeet-feet);

}

OOP Data Conversion Dr. Ahmed Hashim Mohammed

This function is called when an object of type Distance is created with a

single argument. The function assumes that this argument represents

meters. It converts the argument to feet and inches, and assigns the

resulting values to the object. Thus the conversion from meters to Distance

is carried out along with the creation of an object in the statement Distance

dist1 = 2.35;

From User-Defined to Basic

What about going the other way, from a user-defined type to a basic type?

The trick here is to create something called a conversion operator. Here’s

where we do that in ENGLCONV:

operator float()

{

float fracfeet = inches/12;

fracfeet += float(feet);

return fracfeet/MTF;

}

This operator takes the value of the Distance object of which it is a

member, converts it to a float value representing meters, and returns this

value.

Conversions between Objects of Different Classes

What about converting between objects of different user-defined classes?

The same two methods just shown for conversions between basic types

and user-defined types also apply to conversions between two user-

defined types. That is, you can use a one-argument constructor or you can

use a conversion operator. The choice depends on whether you want to put

the conversion routine in the class declaration of the source object or of

OOP Data Conversion Dr. Ahmed Hashim Mohammed

the destination object. For example, suppose you say objecta = objectb;

where objecta is a member of class A and objectb is a member of class B.

Is the conversion routine located in class A (the destination class, since

objecta receives the value) or class B (the source class)? We’ll look at both

cases.

Two Kinds of Time

Our example programs will convert between two ways of measuring time:

12-hour time and 24-hour time. These methods of telling time are

sometimes called civilian time and military time. Our time12 class will

represent civilian time, as used in digital clocks and airport flight

departure displays. We’ll assume that in this context there is no need for

seconds, so time12 uses only hours (from 1 to 12), minutes, and an “a.m.”

or “p.m.” designation. Our time24 class, which is for more exacting

applications such as air navigation, uses hours (from 00 to 23), minutes,

and seconds. Table 8.1 shows the differences.

OOP Data Conversion Dr. Ahmed Hashim Mohammed

Note that 12 a.m. (midnight) in civilian time is 00 hours in military time.

There is no 0 hour in civilian time.

Routine in Source Object

The first example program shows a conversion routine located in the

source class. When the conversion routine is in the source class, it is

commonly implemented as a conversion operator.Here’s the listing for

TIMES1:

//converts from time24 to time12 using operator in time24

#include <iostream>

#include <string>

class time12

{

private:

bool pm; //true = pm, false = am

int hrs; //1 to 12

int mins; //0 to 59

public: //no-arg constructor

time12() : pm(true), hrs(0), mins(0)

{ }

//3-arg constructor

time12(bool ap, int h, int m) : pm(ap), hrs(h), mins(m)

{ }

void display() const //format: 11:59 p.m.

{

cout << hrs << ‘:’;

if(mins < 10)

cout << ‘0’; //extra zero for “01”

OOP Data Conversion Dr. Ahmed Hashim Mohammed

cout << mins << ‘ ‘;

string am_pm = pm ? “p.m.” : “a.m.”;

cout << am_pm;

}

};

class time24

{

private:

int hours; //0 to 23

int minutes; //0 to 59

int seconds; //0 to 59

public: //no-arg constructor

time24() : hours(0), minutes(0), seconds(0)

{ }

time24(int h, int m, int s) : //3-arg constructor

hours(h), minutes(m), seconds(s)

{ }

void display() const //format: 23:15:01

{

if(hours < 10) cout << ‘0’;

cout << hours << ‘:’;

if(minutes < 10) cout << ‘0’;

cout << minutes << ‘:’;

if(seconds < 10) cout << ‘0’;

cout << seconds;

}

operator time12() const; //conversion operator

};

OOP Data Conversion Dr. Ahmed Hashim Mohammed

//--

time24::operator time12() const //conversion operator

{

int hrs24 = hours;

bool pm = hours < 12 ? false : true; //find am/pm

//round secs

int roundMins = seconds < 30 ? minutes : minutes+1;

if(roundMins == 60) //carry mins?

{

roundMins=0;

++hrs24;

if(hrs24 == 12 || hrs24 == 24) //carry hrs?

pm = (pm==true) ? false : true; //toggle am/pm

}

int hrs12 = (hrs24 < 13) ? hrs24 : hrs24-12;

if(hrs12==0) //00 is 12 a.m.

{ hrs12=12; pm=false; }

return time12(pm, hrs12, roundMins);

}

int main()

{

int h, m, s;

while(true)

{ //get 24-hr time from user

cout << “Enter 24-hour time: \n”;

cout << “ Hours (0 to 23): “; cin >> h;

if(h > 23) //quit if hours > 23

return(1);

OOP Data Conversion Dr. Ahmed Hashim Mohammed

cout << “ Minutes: “; cin >> m;

cout << “ Seconds: “; cin >> s;

time24 t24(h, m, s); //make a time24

cout << “You entered: “; //display the time24

t24.display();

time12 t12 = t24; //convert time24 to time12

cout << “\n12-hour time: “; //display equivalent time12

t12.display();

cout << “\n\n”;

}

return 0;

}

In the main() part of TIMES1 we define an object of type time24, called

t24, and give it values for hours, minutes, and seconds obtained from the

user. We also define an object of type time12, called t12, and initialize it

to t24 in the statement time12 t12 = t24; Since these objects are from

different classes, the assignment involves a conversion, and—as we

specified—in this program the conversion operator is a member of the

time24 class. Here’s its declarator:

time24::operator time12() const //conversion operator } This function

transforms the object of which it is a member to a time12 object, and

returns this object, which main() then assigns to t12. Here’s some

interaction with TIMES1:

Enter 24-hour time:

Hours (0 to 23): 17

Minutes: 59

Seconds: 45

You entered: 17:59:45

12-hour time: 6:00 p.m.

