
OOP Derived Class Constructors Dr. Ahmed Hashim Mohammed

1 | P a g e

Derived Class Constructors

In some languages the base class is called the superclass and the derived

class is called the subclass. Some writers also refer to the base class as the

parent and the derived class as the child.

There’s a potential glitch in the COUNTEN program. What happens if we

want to initialize a CountDn object to a value? Can the one-argument

constructor in Counter be used? The answer is no. As we saw in

COUNTEN, the compiler will substitute a no-argument constructor from

the base class, but it draws the line at more complex constructors. To

make such a definition work we must write a new set of constructors for

the derived class. This is shown in the COUNTEN2 program.

// counten2.cpp

// constructors in derived class

#include <iostream>

class Counter

{

protected: //NOTE: not private

unsigned int count; //count

public:

Counter() : count() //constructor, no args

{ }

Counter(int c) : count(c) //constructor, one arg

{ }

unsigned int get_count() const //return count

{ return count; }

Counter operator ++ () //incr count (prefix)

OOP Derived Class Constructors Dr. Ahmed Hashim Mohammed

2 | P a g e

{ return Counter(++count); }

};

class CountDn : public Counter

{

public:

CountDn() : Counter() //constructor, no args

{ }

CountDn(int c) : Counter(c) //constructor, 1 arg

{ }

CountDn operator -- () //decr count (prefix)

{ return CountDn(--count); }

};

//

int main()

{

CountDn c1; //class CountDn

CountDn c2(100);

cout << “\nc1=” << c1.get_count(); //display

cout << “\nc2=” << c2.get_count(); //display

++c1; ++c1; ++c1; //increment c1

cout << “\nc1=” << c1.get_count(); //display it

--c2; --c2; //decrement c2

cout << “\nc2=” << c2.get_count(); //display it

CountDn c3 = --c2; //create c3 from c2

cout << “\nc3=” << c3.get_count(); //display c3

cout << endl;

return 0;

}

OOP Derived Class Constructors Dr. Ahmed Hashim Mohammed

3 | P a g e

This program uses two new constructors in the CountDn class. Here is the

no-argument constructor:

CountDn() : Counter()

{ }

This constructor has an unfamiliar feature: the function name following

the colon. This construction causes the CountDn() constructor to call the

Counter() constructor in the base class. In main(), when we say

CountDn c1;

the compiler will create an object of type CountDn and then call the

CountDn constructor to initialize it. This constructor will in turn call the

Counter constructor, which carries out the work. The CountDn()

constructor could add additional statements of its own, but in this case

it doesn’t need to, so the function body between the braces is empty.

Calling a constructor from the initialization list may seem odd, but it

makes sense. You want to initialize any variables, whether they’re in the

derived class or the base class, before any statements in either the derived

or base-class constructors are executed. By calling the base class

constructor before the derived-class constructor starts to execute, we

accomplish this.

The statement CountDn c2(100);

in main() uses the one-argument constructor in CountDn. This constructor

also calls the corresponding one-argument constructor in the base class:

CountDn(int c) : Counter(c) ← argument c is passed to Counter

{ }

This construction causes the argument c to be passed from CountDn() to

Counter(), where it is used to initialize the object.

OOP Derived Class Constructors Dr. Ahmed Hashim Mohammed

4 | P a g e

In main(), after initializing the c1 and c2 objects, we increment one and

decrement the other and then print the results. The one-argument

constructor is also used in an assignment statement.

CountDn c3 = --c2;

Inheritance in the English Distance Class

Here’s a somewhat more complex example of inheritance. So far in this

book the various programs that used the English Distance class assumed

that the distances to be represented would always be positive. This is

usually the case in architectural drawings. However, if we were

measuring, say, the water level of the Pacific Ocean as the tides varied, we

might want to be able to represent negative feet-and-inches quantities.

(Tide levels below mean-lower-low-water are called minus tides; they

prompt clam diggers to take advantage of the larger area of exposed

beach.)

Let’s derive a new class from Distance. This class will add a single data

item to our feet-and inches measurements: a sign, which can be positive or

negative. When we add the sign, we’ll also need to modify the member

functions so they can work with signed distances. Here’s the

listing for ENGLEN:

// englen.cpp

// inheritance using English Distances

#include <iostream>

using namespace std;

enum posneg { pos, neg }; //for sign in DistSign

class Distance //English Distance class

{

protected: //NOTE: can’t be private

OOP Derived Class Constructors Dr. Ahmed Hashim Mohammed

5 | P a g e

int feet; float inches;

public: //no-arg constructor

Distance() : feet(0), inches(0.0) { } //2-arg constructor)

Distance(int ft, float in) : feet(ft), inches(in) { }

void getdist() //get length from user

{ cout << “\nEnter feet: “; cin >> feet;

cout << “Enter inches: “; cin >> inches; }

void showdist() const //display distance

{ cout << feet << “\’-” << inches << ‘\”’; }

};

class DistSign : public Distance //adds sign to Distance

{

private:

posneg sign; //sign is pos or neg

public:

DistSign() : Distance() //call base constructor no-arg constructor

{ sign = pos; } //set the sign to + Inheritance

//2- or 3-arg constructor

DistSign(int ft, float in, posneg sg=pos) : Distance(ft, in) //call base constructor

{ sign = sg; } //set the sign

void getdist() //get length from user

{ Distance::getdist(); //call base getdist()

char ch; //get sign from user

cout << “Enter sign (+ or -): “; cin >> ch;

sign = (ch==’+’) ? pos : neg; }

void showdist() const //display distance

{ cout << ((sign==pos) ? “(+)” : “(-)”); //show sign

Distance::showdist(); //ft and in }

OOP Derived Class Constructors Dr. Ahmed Hashim Mohammed

6 | P a g e

};

int main()

{

DistSign alpha; //no-arg constructor

alpha.getdist(); //get alpha from user

DistSign beta(11, 6.25); //2-arg constructor

DistSign gamma(100, 5.5, neg); //3-arg constructor

cout << “\nalpha = “; alpha.showdist();//display all distances

cout << “\nbeta = “; beta.showdist();

cout << “\ngamma = “; gamma.showdist();

cout << endl;

return 0;

}

Here the DistSign class adds the functionality to deal with signed

numbers. The Distance class in this program is just the same as in previous

programs, except that the data is protected.

Actually in this case it could be private, because none of the derived-class

functions accesses it. However, it’s safer to make it protected so that a

derived-class function could access it if necessary.

The main() program declares three different signed distances. It gets a

value for alpha from the user and initializes beta to (+)11'–6.25'' and

gamma to (–)100'–5.5''. In the output we use parentheses around the sign

to avoid confusion with the hyphen separating feet and inches. Here’s

some sample output:

Enter feet: 6

Enter inches: 2.5

OOP Derived Class Constructors Dr. Ahmed Hashim Mohammed

7 | P a g e

Enter sign (+ or -): -

alpha = (-)6’-2.5”

beta = (+)11’-6.25”

gamma = (-)100’-5.5”

The DistSign class is derived from Distance. It adds a single variable,

sign, which is of type posneg. The sign variable will hold the sign of the

distance. The posneg type is defined in an enum statement to have two

possible values: pos and neg.

Constructors in DistSign

DistSign has two constructors, mirroring those in Distance. The first takes

no arguments, the second takes either two or three arguments. The third,

optional, argument in the second constructor is a sign, either pos or neg.

Its default value is pos. These constructors allow us to define variables

(objects) of type DistSign in several ways.

Both constructors in DistSign call the corresponding constructors in

Distance to set the feetand-inches values. They then set the sign variable.

The no-argument constructor always sets it to pos. The second constructor

sets it to pos if no third-argument value has been provided, or to a value

(pos or neg) if the argument is specified.

The arguments ft and in, passed from main() to the second constructor in

DistSign, are simply forwarded to the constructor in Distance.

Member Functions in DistSign Adding a sign to Distance has

consequences for both of its member functions. The getdist()

function in the DistSign class must ask the user for the sign as well as for

feet-and-inches values, and the showdist() function must display the sign

OOP Derived Class Constructors Dr. Ahmed Hashim Mohammed

8 | P a g e

along with the feet and inches. These functions call the corresponding

functions in Distance, in the lines

Distance::getdist(); and Distance::showdist();

These calls get and display the feet and inches values. The body of

getdist() and showdist() in DistSign then go on to deal with the sign.

