
OOP Class Hierarchies Dr. Ahmed Hashim Mohammed

1 | P a g e

Class Hierarchies

In some languages the base class is called the superclass and the derived

class is called the subclass. Some writers also refer to the base class as the

parent and the derived class as the child.

In the examples so far in this chapter, inheritance has been used to add

functionality to an existing class. Now let’s look at an example where

inheritance is used for a different purpose: as part of the original design of

a program. Our example models a database of employees of a widget

company. We’ve simplified the situation so that only three kinds of

employees are represented. Managers manage, scientists perform

research to develop better widgets, and laborers operate the dangerous

widget-stamping presses.

The database stores a name and an employee identification number for all

employees, no matter what their category. However, for managers, it also

stores their titles and golf club dues. For scientists, it stores the number of

scholarly articles they have published. Laborers need no additional data

beyond their names and numbers. Our example program starts with a base

class employee. This class handles the employee’s last name and

employee number. From this class three other classes are derived:

manager, scientist, and laborer. The manager and scientist classes contain

additional information about these categories of employee, and member

functions to handle this information, as shown in Figure 9.5.

OOP Class Hierarchies Dr. Ahmed Hashim Mohammed

2 | P a g e

Here’s the listing for EMPLOY:

// employ.cpp

// models employee database using inheritance

#include <iostream>

using namespace std;

const int LEN = 80; //maximum length of names

//

class employee //employee class

{

private:

char name[LEN]; //employee name

unsigned long number; //employee number

public:

void getdata()

{

cout << “\n Enter last name: “; cin >> name;

OOP Class Hierarchies Dr. Ahmed Hashim Mohammed

3 | P a g e

cout << “ Enter number: “; cin >> number;

}

void putdata() const

{

cout << “\n Name: “ << name;

cout << “\n Number: “ << number;

}

};

//

class manager : public employee //management class

{

private:

char title[LEN]; //”vice-president” etc.

double dues; //golf club dues

public:

void getdata()

{

employee::getdata();

cout << “ Enter title: “; cin >> title;

cout << “ Enter golf club dues: “; cin >> dues;

}

void putdata() const

{

employee::putdata();

cout << “\n Title: “ << title;

cout << “\n Golf club dues: “ << dues;

}

};

OOP Class Hierarchies Dr. Ahmed Hashim Mohammed

4 | P a g e

//

class scientist : public employee //scientist class

{

private:

int pubs; //number of publications

public:

void getdata()

{

employee::getdata();

cout << “ Enter number of pubs: “; cin >> pubs;

}

void putdata() const

{

employee::putdata();

cout << “\n Number of publications: “ << pubs;

}

};

//

class laborer : public employee //laborer class

{

};

//

int main()

{

manager m1, m2;

scientist s1;

laborer l1;

cout << endl; //get data for several employees

OOP Class Hierarchies Dr. Ahmed Hashim Mohammed

5 | P a g e

cout << “\nEnter data for manager 1”;

m1.getdata();

cout << “\nEnter data for manager 2”;

m2.getdata();

cout << “\nEnter data for scientist 1”;

s1.getdata();

cout << “\nEnter data for laborer 1”;

l1.getdata();

//display data for several employees

cout << “\nData on manager 1”;

m1.putdata();

cout << “\nData on manager 2”;

m2.putdata();

cout << “\nData on scientist 1”;

s1.putdata();

cout << “\nData on laborer 1”;

l1.putdata();

cout << endl;

return 0;

}

The main() part of the program declares four objects of different classes:

two managers, a scientist, and a laborer. (Of course many more employees

of each type could be defined, but the output would become rather large.)

It then calls the getdata() member functions to obtain information about

each employee, and the putdata() function to display this information.

Here’s a sample interaction with EMPLOY. First the user supplies the

data.

OOP Class Hierarchies Dr. Ahmed Hashim Mohammed

6 | P a g e

Enter data for manager 1

Enter last name: Wainsworth

Enter number: 10

Enter title: President

Enter golf club dues: 1000000

Enter data on manager 2

Enter last name: Bradley

Enter number: 124

Enter title: Vice-President

Enter golf club dues: 500000

Enter data for scientist 1

Enter last name: Hauptman-Frenglish

Enter number: 234234

Enter number of pubs: 999

Enter data for laborer 1

Enter last name: Jones

Enter number: 6546544

The program then plays it back.

Data on manager 1

Name: Wainsworth

Number: 10

Title: President

Golf club dues: 1000000

Data on manager 2

Name: Bradley

Number: 124

OOP Class Hierarchies Dr. Ahmed Hashim Mohammed

7 | P a g e

Title: Vice-President

Golf club dues: 500000

Data on scientist 1

Name: Hauptman-Frenglish

Number: 234234

Number of publications: 999

Data on laborer 1

Name: Jones

Number: 6546544

A more sophisticated program would use an array or some other container

to arrange the data so that a large number of employee objects could be

accommodated.

“Abstract” Base Class

Notice that we don’t define any objects of the base class employee. We

use this as a general class whose sole purpose is to act as a base from

which other classes are derived.

The laborer class operates identically to the employee class, since it

contains no additional data or functions. It may seem that the laborer class

is unnecessary, but by making it a separate class we emphasize that all

classes are descended from the same source, employee. Also, if in the

future we decided to modify the laborer class, we would not need to

change the declaration for employee.

Classes used only for deriving other classes, as employee is in EMPLOY,

are sometimes loosely called abstract classes, meaning that no actual

instances (objects) of this class are created.

OOP Class Hierarchies Dr. Ahmed Hashim Mohammed

8 | P a g e

Constructors and Member Functions

There are no constructors in either the base or derived classes, so the

compiler creates objects of the various classes automatically when it

encounters definitions like manager m1, m2;

using the default constructor for manager calling the default constructor

for employee. The getdata() and putdata() functions in employee accept a

name and number from the user and display a name and number.

Functions also called getdata() and putdata() in the manager and scientist

classes use the functions in employee, and also do their own work.

In manager, the getdata() function asks the user for a title and the amount

of golf club dues, and putdata() displays these values. In scientist, these

functions handle the number of publications.

