1
Parsing Techniques (Bottom~Up Parsing)

Operator-Precedence Parsing (OPP)

The operator-precedence parser is a shift —reduce parser that can be easily
constructed by hand. Operator precedence parser can be constructed from a small
class of grammars which is called operator grammar. These grammars have the
property (among other essential requirements)

- That no production right side is €

- And no production right side has two adjacent nonterminal.

Example: The following grammar for expressions
E——EAE/(E)/-E/id
A——+/[-/1*/+/7
Is not an operator grammar, because the right side EAE has two (in fact three)

consecutive nonterminals. However, if we substitute for A each of its alternatives,
we obtain the following operator grammar:
E— SE+E/E-E/E*E/E<E/E{E/(E)/-E/id

We now describe an easy-to-implement parsing technique called operator-
precedence parsing.
operator-precedence relation:

In operator-precedence parsing, there are three disjoint precedence relations
namely:

<e - |ess than =e -equal to o> - greater than

The relations give the following meanings:

RELATION MEANING
a<e b a "yields precedence to" b
a=b a "has the same precedence as" b
as>b a "takes precedence over" b

2
Parsing Techniques (Bottom~Up Parsing)

How to Create Operator-Precedence Relations:

» We use associativity and precedence relations among operators.

1. If operator 01 has higher precedence than operator 62, then make 01. > 02 and 02
<.01
2. If operators 61 and 02, are of equal precedence, then make 01. > 02 and 62. > 61
if operators are left associative 01 <. 02 and 62 <. 61 if right associative
3. Make the following for all operators 0:
0<.id,id.>9
0<.(,(<.0
).>6,0.>)
6.>5,8<.0
4.Also make
(=) ,(<.(,).>) , (<.id id.>) ,$<.id , id.>$ |,
$<.(,).>$
These rules ensure that both id and (E) will be reduced to E. Also, $ serves as both
the left and right endmarker, causing handles to be found between $’s wherever
possible
Note:
e Id has higher precedence than any other symbol
e $ has lowest precedence.
o if two operators have equal precedence, then we check the Associativity of that

particular operator.

3
Parsing Techniques (Bottom~Up Parsing)

Example:

Operator-precedence relations for the grammar

E — E+E | E-E | E¥E | E/E | E1E | (E) | -E | id , is given in the following table
assuming

1. M is of highest precedence and right-associative

2. * and / are of next higher precedence and left-associative, and

3.+ and - are of lowest precedence and left-associative

Note that the X in the table denote error entries

>/~ *
Y,
v
Y,
v
A
A
v
\
v

h o~
Y,
Y,
Y,
Y,
Y,
x
Y,
x
Y,

4
Parsing Techniques (Bottom~Up Parsing)

Operator-precedence parsing algorithm:

Input: an input string w & table of precedence relations (holds precedence relations
between certain terminals).

Output: if w is well formed, a skeletal parse tree, with a placeholder non-terminal
E labeling all interior nodes; otherwise, an error indication.

Method: initially the stack contains $ and the input buffer the string w$.to parse,
we execute the following program:

Algorithm:
set p to point to the first symbol of w$;
repeat forever
if ($ is on top of the stack and p points to $) then return

else {
let a be the topmost terminal symbol on the stack and let b be the symbol
pointed to by p;
if (a<b or a=-b)then { /* SHIFT */
push b onto the stack;
advance p to the next input symbol;

b
elseif (a >b) then /* REDUCE */
repeat pop stack

until (the top of stack terminal is related by < to the terminal most
recently popped);
else error();

}

Stack implementation of operator precedence parser:

operator precedence parsing uses a stack and precedence relation table for its
implementation of above algorithm. It is a shift-reduce parsing containing all four
actions shift, reduce, accept and error (like shift-reduce technique but in the other
manner).

The initial configuration of an operator precedence parsing is

Stack Input
$ W$
Where W is the input string to be parsed

5
Parsing Techniques (Bottom~Up Parsing)

the precedence and associativity of the rule on the top of stack, and the current token
are used to determine whether to shift or reduce. this is done as follow:

When the relation between the top of stack and the leftmost of input word is .> this
Is mean perform reduce action, otherwise (when the relation < or =) the action is
Shift .example 1 explain how use the Operator precedence for parse the an
expression

Ex:-1
Use Stack implementation of operator precedence parser to check this sentence
id +id by this grammar: E— E+E | E*E | id

Sol:
Stack Input
$ < 1d + 1d$
$ <id +1d$
$<1d> +1d$
$<E+ +1d$
$<E+ < 1d$
$<E+<ad $
$<E+<1d> $
$<E+E> 9
$E $
accept

6

Parsing Techniques (Bottom~Up Parsing)

Ex2: Consider the following grammar
E - EOE|-E| (E)| id

0> -+ T

Using Operator precedence for parse the expression

Sol:

E-> E+E |E-E | E*E | E/E |[E*E | (E) | -E | id

id1*(id2+id3) 1 id

Stack input Action

$ < id1*(id2+id3) 1 id $ shift

$idl > *(1d2+id3) 1id $ Reduce E~>id
$E < *(id2+id3) 1 id $ shift

$E* < (id2+id3) 1 id $ shift

$ E*(< id2+id3) 1id $ shift

$ E*(id2 > +id3) 1id $ Reduce E~>id
$ E*(E +id3) 1id $ shift

$ E*(E+ < id3)1id $ shift

$ E*(E+id3 >)1id $ Reduce E~>id
$E*(E+E >)1id $ Reduce E>E+E
$ E*(E =)1id $ Shift
$E*(E) > 1 id$ Reduce E=>(E)
$E*E < 1 id$ shift
$E*E1T < id$ shift
$E*E1 id > $ Reduce E > id
$E*Et E > $ Reduce E > E 1

E

$E*E > $ Reduce E>E*E
$E $ Accept
H.wW

Try input id*(id 1 id)-id/id) using the same grammar in EX2

