
1

 Parsing Techniques (Bottom-Up Parsing)

Operator-Precedence Parsing (OPP)

The operator-precedence parser is a shift –reduce parser that can be easily

constructed by hand. Operator precedence parser can be constructed from a small

class of grammars which is called operator grammar. These grammars have the

property (among other essential requirements)

 - That no production right side is ε

- And no production right side has two adjacent nonterminal.

Example: The following grammar for expressions

 E EAE / (E) / -E / id

 A  + /- / * / ÷ / ↑

Is not an operator grammar, because the right side EAE has two (in fact three)

consecutive nonterminals. However, if we substitute for A each of its alternatives,

we obtain the following operator grammar:

E E+E / E-E / E*E / E÷E / E↑E / (E) / -E / id

We now describe an easy-to-implement parsing technique called operator-

precedence parsing.

operator-precedence relation:

In operator-precedence parsing, there are three disjoint precedence relations

namely:

 <• - less than =• - equal to •> - greater than

The relations give the following meanings:

RELATION MEANING

a <• b

a = b

a •> b

a "yields precedence to" b

 a "has the same precedence as" b

a "takes precedence over" b

2

 Parsing Techniques (Bottom-Up Parsing)

How to Create Operator-Precedence Relations:

• We use associativity and precedence relations among operators.

1. If operator θ1 has higher precedence than operator θ2, then make θ1. > θ2 and θ2

< . θ1

2. If operators θ1 and θ2, are of equal precedence, then make θ1. > θ2 and θ2. > θ1

if operators are left associative θ1 < . θ2 and θ2 < . θ1 if right associative

3. Make the following for all operators θ:

 θ < . id , id . > θ

 θ < . (, (< . θ

) . > θ , θ . >)

 θ . > $, $ < . θ

4.Also make

(=) , (< . (,) . >) , (< . id , id . >) , $ < . id , id . > $,

$ < . (,) . > $

 These rules ensure that both id and (E) will be reduced to E. Also, $ serves as both

the left and right endmarker, causing handles to be found between $’s wherever

possible

Note:

 Id has higher precedence than any other symbol

 $ has lowest precedence.

 if two operators have equal precedence, then we check the Associativity of that

particular operator.

3

 Parsing Techniques (Bottom-Up Parsing)

Example:

Operator-precedence relations for the grammar

E → E+E | E-E | E*E | E/E | E↑E | (E) | -E | id , is given in the following table

assuming

1. ^ is of highest precedence and right-associative

2. * and / are of next higher precedence and left-associative, and

3. + and - are of lowest precedence and left-associative

Note that the X in the table denote error entries

 + - * / ^ () id $

+ > > < < < < > < >

- > > < < < < > < >

* > > > > < < > < >

/ > > > > < < > < >

^ > > > > < < > < >

(< < < < < < = < 

) > > > > >  >  >

id > > > > >  >  >

$ < < < < < <  < 

4

 Parsing Techniques (Bottom-Up Parsing)

:parsing algorithm precedence-Operator

Input: an input string w & table of precedence relations (holds precedence relations

between certain terminals).

Output: if w is well formed, a skeletal parse tree, with a placeholder non-terminal

E labeling all interior nodes; otherwise, an error indication.

Method: initially the stack contains $ and the input buffer the string w$.to parse,

we execute the following program:

Algorithm:
 set p to point to the first symbol of w$;
 repeat forever
 if ($ is on top of the stack and p points to $) then return
 else {
 let a be the topmost terminal symbol on the stack and let b be the symbol

 pointed to by p;

 if (a <
.

 b or a =· b) then { /* SHIFT */
 push b onto the stack;
 advance p to the next input symbol;
 }

 else if (a
.

> b) then /* REDUCE */
 repeat pop stack

 until (the top of stack terminal is related by <
.

 to the terminal most
 recently popped);

 else error();
 }

Stack implementation of operator precedence parser:

operator precedence parsing uses a stack and precedence relation table for its

implementation of above algorithm. It is a shift-reduce parsing containing all four

actions shift, reduce, accept and error (like shift-reduce technique but in the other

manner).

The initial configuration of an operator precedence parsing is

Stack Input

 $ W$

Where W is the input string to be parsed

5

 Parsing Techniques (Bottom-Up Parsing)

the precedence and associativity of the rule on the top of stack, and the current token

are used to determine whether to shift or reduce. this is done as follow:

When the relation between the top of stack and the leftmost of input word is .> this

is mean perform reduce action, otherwise (when the relation < or =) the action is

Shift .example 1 explain how use the Operator precedence for parse the an

expression

Ex: - 1

Use Stack implementation of operator precedence parser to check this sentence

id + id by this grammar: E→ E+E | E*E | id

Sol:

6

 Parsing Techniques (Bottom-Up Parsing)

Ex2: Consider the following grammar

 E  EOE | -E| (E)| id

 O - | +| *|/| 

Using Operator precedence for parse the expression id1*(id2+id3) ↑ id

Sol:

E E+E | E-E | E*E | E/E | E^E | (E) | -E | id

Stack input Action

$ < id1*(id2+id3) ↑ id $ shift

$ id1 > *(id2+id3) ↑ id $ Reduce Eid

$E > *(id2+id3) ↑ id $ shift

$E* > (id2+id3) ↑ id $ shift

$ E*(< id2+id3) ↑ id $ shift

$ E*(id2 > +id3) ↑ id $ Reduce Eid

$ E*(E < +id3) ↑ id $ shift

$ E*(E+ < id3) ↑ id $ shift

$ E*(E+ id3 >) ↑ id $ Reduce Eid

$ E*(E+ E >) ↑ id $ Reduce EE+E

$ E*(E =) ↑ id $ Shift

$E*(E) > ↑ id$ Reduce E(E)

$E * E < ↑ id$ shift

$E*E↑ < id$ shift

$E*E↑ id > $ Reduce E  id

$E*E↑ E > $ Reduce E  E ↑

E

$ E * E > $ Reduce EE*E

$ E $ Accept

H.W

Try input id*(id ↑ id)-id/id) using the same grammar in EX2

