
Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

1

Lecture 3

CLASSES AND OBJECTS

3.1 CLASS
A class is a way to bind the data and its associated functions together its

similar syntactically to a structure. Generally, a class specification has two

parts:

1. Class declaration

2. Class function definitions

Class declaration: - describes the type and scope of its members.

Class function definitions: - describe how the class functions are

implemented.

The general form of a class declaration is:

However, the public members (both functions and data) can be accessed

from outside the class. This is illustrated in fig. 3.1.

 class class_name

 {

 private:

 variable declarations;

 function declarations;

 public:

 variable declarations;

 function declarations ;

 };

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

2

3.1.1 A Simple Class

EX(1):-The program contains a class and two objects of that class.

Although it’s simple, the program demonstrates the syntax and general

features of classes in C++. Here’s the listing for the SMALLOBJ program:

Class Example 1: // smallobj

#include <iostream>

using namespace std;

class smallobj //define a class

{

 private:

int somedata; //class data

public:

Private area

Data

Functions

 Public area

Data

Functions

 No entry to
 private area

Enter allowed

Fig. 3.1 Data hiding in classes

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

3

void setdata(int d) //member function to set data

{ somedata = d; }

void showdata() //member function to display data

{ cout << “Data is “ << somedata << endl; }

};

int main()

{

 smallobj s1, s2; //define two objects of class smallobj

s1.setdata (1066); //call member function to set data

s2.setdata (1776);

s1.showdata (); //call member function to display data

s2.showdata ();

return 0;

}

1- The class smallobj defined in this program contains one data item and

two member functions.

2- The first member function sets the data item to a value, and the second

displays the value.

3- Each of the two objects is given a value, and each displays its value.

Here’s the output of the program:

Data is 1066 ← object s1 displayed this

Data is 1776 ← object s2 displayed this

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

4

3.1.2 Private and Public

The body of the class contains two keywords: private and public. What is

their purpose? The primary mechanism for hiding data is to put it in a

class and make it private. Private data or functions can only be accessed

from within the class the use of the keyword private is optional. By

default, the members of a class are private. Public data or functions, on

the other hand, are accessible from outside the class. This is shown in

Figure 3.2.

Fig(3.2) a two objects of class smallobj

3.1.3 Class Data

The smallobj class contains one data item: some data, which is of type int.

The data items within a class are called data members. The data member

some data follows the keyword private, so it can be accessed from within

the class, but not from outside.

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

5

3.1.4 Member Functions

Member functions are functions that are included within a class. There are

two member functions in smallobj: setdata() and showdata().Because

setdata() and showdata() follow the keyword public, they can be accessed

from outside the class. Figure 3.3 shows the syntax of a class definition.

Fig (3.3) Syntax of a class definition.

3.2 Defining Objects (Creating Objects)

The first statement in main() smallobj s1, s2; defines two objects, s1 and s2,

of class smallobj. The definition of the class smallobj does not create any

objects. Defining an object is similar to defining a variable of any data type:

Space is set aside for it in memory. Defining objects in this way means

creating them.

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

6

3.3 Accessing Class members (Calling members functions)

The private data of a class can be accessed only through the member

functions of that class. The main() cannot contain statements that access to

somedata directly . The following is the format for calling a member

function:

The next two statements in main() call the member function setdata():

s1.setdata(1066);

s2.setdata(1776);

The first call to setdata() s1.setdata(1066); executes the setdata() member

function of the s1 object. This function sets the variable somedata in object

s1 to the value 1066. The second call s2.setdata(1776); causes the variable

somedata in s2 to be set to 1776. Now we have two objects whose somedata

variables have different values, as shown in Figure 3.4.

FIGURE 3.4 Two objects of class smallobj.

 cobject-name . function-name (actual-arguments);

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

7

Similarly, the following two calls to the showdata() function will cause the

two objects to display their values:

s1.showdata();

s 2.showdata();

Messages

Some object-oriented languages refer to calls to member functions as

messages. Thus the call s1.showdata(); can be thought of as sending a

message to s1 telling it to show its data. Talking about messages

emphasizes that objects are discrete entities and that we communicate with

them by calling their member functions.

3.4 Defining Member Functions

Member functions can be defined in two places:

1- Outside the class definition.

2- Inside the class definition

1- Outside The Class Definition

They should have a function header and a function body. The general form

of a member function definition is:

 return-type class-name : : function-name (argument declaration)

 {

 Function body
 }

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

8

The class-name:: tells the compiler that the function function-name

belongs to the class class-name. That is, the scope of the function is

restricted to the class-name specified in the header line.

The symbol:: is called the scope resolution operator.

For instance, consider the member functions getdata () and putdata ()

member functions. They may be coded as follows:

 Class item

 {

 int number;

 float cost;

 public:

 void getdata (int a, float b); // declaration

 void putdata (void); // declaration

 };

 void item :: getdata (int a , float b)

 {

 number = a;

 cost = b;

 }

 void item :: putdata(void)

 {

 cout << “number : “ << number << ”\n”;

 cout << ”cost : “ << cost << ”\n”;

 }

Since these functions do not return any value, their return-type is void.

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

9

 Member function can access the private data of the class. A non-

 member function cannot do so.

 A member function can call another member function directly,

without using the dot operator.

2- Inside the class Definition:-

Another method of defining a member function is to replace the function

declaration by the actual function definition inside the class. For

example, we could define the item class as follows:

 Class item

 {

 int number;

 float cost;

 public:

 void getdata (int a, float b); // definition

 {

 number = a;

 cost = b;

 }

 void putdata (void) // definition

 {

 cout << number << “\n”;

 cout << cost << ”\n”;

 }

 };

When a function is defined inside a class, it is treated as an inline

function.

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

10

EX:- A C++ program with class

// Class implementation

include <iostream>

using namespace std;

class item // class declaration

{ private:

 int number; // private by default

float cost ; // private by default

public:

void getdata (int a , float b) ; // prototype declaration

void putdata (void) // function defined her

{

 cout <<”number :’’ << number << “\n” ;

 cout <<”cost :” << cost << “\n” ;

 }

 }

//Member Function Definition

void item :: getdata (int a , float b) // use membership label

{

 number = a ; // private variables

 cost = b; // directly used

}

// Main Program

main()

{

 item x; // create object x

 cout << “\n object x “ << “ \n” ;

 x. getdata (100,299.95); // call member function

 x.putdata (); // call member function

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

11

 item y; // create object y

 cout << “\no bject y “ << “\n” ;

 y.getdata (200, 175.50);

 y. putdata ();

}

Here is the output of above program:

 object x

 number : 100

 cost : 299.950012

 object y

 number : 200

 cost :175.5

Ex3:-Write program to create class to compute value of Y from equation

Y=௑
మషೋ

ଶ௑
 if X>0

Solution:-

#include <iostream>

using namespace std;

class equation

{

float X,Y,Z;

public:

void getdata (float a, float b);

void compute_disp();

};

void equation :: getdata(float a ,float b)

{ X=a;

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

12

 Z=b;}

void equation ::compute_disp()

{

 if (X>0)

{ Y=(X*X -Z)/2*X; cout <<”\n Y= “<<Y;}

else cout<< “\n value of X less than zero”;

 }

 void main()

 {

 equation XE; float a,b;

 cin>> a>>b;

 XE.getdata (a,b);

 XE.compute_disp();

 }

EX4:- Write program to create class to compute area of rectangle.

Solution:-

#include <iostream>

using namespace std;

class rectangle

{

float length,width ,Ar;

public:

void readdata (float a, float b);

void AREA(void);

void display(void);

}

void rectangle :: readdata(float a, float b)

{ length=a; width=b;}

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

13

void rectangle ::AREA()

{ Ar= length * width;}

void rectangle :: display()

{ cout <<"\n area of rectangle = "<< Ar; }

 void main()

 {

 rectangle R; float L,W;

cout <<"enter length and width of rectangle :"<<endl;

cin>> L>>W;

 R.readdata (L,W);

 R.AREA ();

 R.display ();

 }

// widget part as an object

#include <iostream>

using namespace std;

class part //define class

{

private:

int modelnumber; //ID number of widget

int partnumber; //ID number of widget part

float cost; //cost of part

public:

void setpart(int mn, int pn, float c) //set data

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

14

{

modelnumber = mn;

partnumber = pn;

cost = c;

}

void showpart() //display data

{

cout << “Model “ << modelnumber;

cout << “, part “ << partnumber;

cout << “, costs $” << cost << endl;

}

};

main()

{ part part1; //define object of class part

part1.setpart(6244, 373, 217.55); //call member function

part1.showpart(); //call member function

}

3.5 Nesting of member functions

A member function can be called by using its name inside another

member function of the same class. This is known as nesting of member

functions.

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

15

//Nesting of Member Functions

 # include <iostream>

using namespace std;

 class set

 {

 int m , n;

 public:

 void input (void);

 void display (void);

 int largest (void);

 };

int set :: largest (void)

{

 if (m >=n)

 return (m);

 else

 return (n);

}

void set :: input (void)

{

 cout << “ input values of m and n “ << “\n” ;

 cin >> m >> n ;

}

 void set :: display (void)

{

 cout <<”largest value = “

 << largest () << “\n”; // calling member function

}

 main ()

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

16

{

set A ;

A. input ();

A. display ();

} // end program

The output of program would be:

 Input values of m and n

 30 17

 largest value = 30

EX5:-Write program to create class to find summation of any two integer

numbers.

Solution:-

#include <iostream>

using namespace std;

class SUM1

{

int X,Z;

public:

void readdata (float a, float b)

{ X=a; Z=b; }

int sum(void)

{ return (X+Z) ; }

void putdata ()

{ cout <<" \n summation of "<<X <<"+"<<Z <<" = "<<sum()<<endl; }

};

void main()

 {

 SUM1 S; int a,b;

 cout<<" \n enter two integer number :"<<endl;

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

17

 cin>> a>>b;

 S.readdata (a,b);

 S.putdata ();

S.readdata (30,15);

S.putdata();

}

3.6 Private member functions

Although it is normal practice to place all the data item in a private section

and all the functions in public, some situations may require certain

functions to be hidden (like private data) from the outside calls. Tasks such

as deleting an account in a customer file, or providing increment to an

employee are events of serious consequences and therefore the functions

handling such tasks should have restricted access. We can place these

functions in the private section.

 A private member function can only be called by another function that is

a member of its class.

Example:-

 class sample

 {

 int m ;

 void read (void); //private member function

 public:

 void update (void);

 void write (void);

 };

If s1 is an object of sample, then

 s1.read(); // won’t work ; objects cannot access private

 // members

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

18

Is illegal. However, the function read() can be called by the function

update() to update the value of m .

void sample : : update (void)

 {

 read (); // simple call; no object used

 }

3.7 Arrays within a Class

The arrays can be used as member variables in a class. The following class

definition is valid.

 const int size = 10 ; // provides value for array size

 class array

 {

 int a[size]; // ‘a’ is int type array

 public:

 void setval(void);

 void display(void);

 };

EX:-

#include <iostream>

#include <conio.h>

using namespace std;

const m=5;

class ITEMS

{

 int itemcode [m] ;

 float itemprice [m] ;

 int count ;

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

19

 public:

 void CNT(void) { count=0 ;} // initializes count to 0

 void getitem(void) ;

 void displaysum(void) ;

 void remove(void) ;

 void displayitems(void) ;

};

// Member functions

void ITEMS :: getitem(void) //assign values to members

{

 cout <<"Enter item code :" ;

 cin >> itemcode [count] ;

 cout << "Enter item cost :" ;

 cin >> itemprice [count] ;

 count ++;

 }

void ITEMS :: displaysum(void) // display total value

{ float sum = 0;

 for(int i= 0 ; i< count ; i++)

 sum = sum + itemprice[i] ;

 cout << "\n Total value :"<< sum << "\n" ;

 }

void ITEMS :: remove(void) // Delete a specified item

{

 int a;

 cout << "Enter item code :" ;

 cin >> a;

 for(int i=0 ; i < count ; i++)

 if (itemcode [i]==a)

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

20

 { itemcode[i] =0;itemprice [i]=0;}

 }

void ITEMS :: displayitems(void) // displaying items

{

 cout << "\n code price\n" ;

 for (int i=0 ; i< count ; i++)

 {

 cout <<"\n"<< itemcode[i];

 cout <<" "<< itemprice[i];

 }

 cout <<"\n" ;

 }

// Main program

main()

{

 ITEMS order;

 order. CNT();

 int x;

 do //do . . . while loop

 {

 cout <<"\n You can do this following ;"

 << "\n Enter appropriate number \n";

 cout << "\n1 : Add an item ";

 cout << "\n2 : Display total value ";

 cout << "\n3 : Deleting an item ";

 cout << "\n4 : Display all items ";

 cout << "\n5 : Quit ";

 cout <<"\n\nwhat is your option?";

 cin >> x ;

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

21

 switch (x)

 {

 case 1 : order. getitem() ; break ;

 case 2 : order. displaysum() ; break ;

 case 3 : order. remove() ; break ;

 case 4 : order. displayitems() ; break ;

 case 5 : break ;

 default : cout << "Error in input ; try again\n" ;

 }

 } while (x !=5); // do . . while en

getch();

 }

3.8 Arrays of Objects

 We know that an array can be of any data type including struct. Similarly,

we can also have arrays of variables that are of the type class. Such

variables are called arrays of objects. Consider the following class

definition:

class employee

{char name[30];

 float age;

 public:

 void
getdata(void);

 void
putdata(void);

};

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

22

The identifier employee is a user-defined data type and can be used to

create objects that related to different categories of the employees.

EX:-

The array manager contains three objects(managers), namely, manager[0],

manager[1] and manager[2], of type employee class. Similarly, the

foreman array contains 15 objects(foremen) and the worker array contains

75 objects(workers).

 We can use the usual array-accessing methods to access individual

elements and then the dot member operator to access the member functions.

For example, the statement

 Manager [I]. Putdata ();

Will display the data of the ith element of the array manager. That is, this

statement

Arrays of Objects

#include <iostream>

using namespace std;

class employee

{

 char name[30]; //string as class member

 float age;

 public:

 void getdata(void);

 void putdata(void);

employee manager[3]; // array of manager

employee foreman[15]; // array of foreman

employee worker[75]; // array of worker

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

23

};

void employee :: getdata(void)

{

 cout << “Enter name: “;

 cin >> name;

 cout << “Enter age: “;

 cin >> age;

}

void employee :: putdata(void)

{

 cout << “Name: “ << name << “\n”;

 cout << “Age: “ << age << “\n”;

}

const int size =3;

main()

{ employee manager[size]; //Array of managers

 for (int i = 0; i < size; i++)

 {

 cout << “\nDetails of manager” << i+1 << “\n”;

 manager[i] . getdata();

 }

 cout << “\n”;

 for (int t = 0; t < size; t++)

 {

 cout << “\nManager” << t+1 << “\n”;

 manager[t] . putdata();

 }

}

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

24

3.9 Objects as Function Arguments

Like any other data type, an object may be used as function argument. This

can be done in two ways:

 A copy of the entire object is passed to the function.

 Only the address of the object is transferred to the function.

The first method is called pass-by-value. Since a copy of the object is

passed to the function, any changes made to the object inside the function

do not affect the object used to call the function. The second method is

call pass-by-reference. When an address of the object is passed, the

called function works directly on the actual object used in the call.

 [Objects As Arguments]

 # include <iostream>

using namespace std;

class time

{ int hours, minutes ;

 public:

 void gettime (int h , int m)

 { hours = h; minutes = m; }

 void puttime (void)

 {

 cout << hours <<” hours and “;

 cout << minutes <<”minutes “ << ”\n”;

 }

 void sum(time, time); //objects are arguments

 };

 void time :: sum(time t1, time t2) // t1, t2 are objects

 {

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

25

 minutes = t1 . minutes+ t2 . minutes;

 hours = minutes/60;

 minutes = minutes %60;

 hours = hours + t1 . hours + t2 . hours;

 }

main()

{ time T1 , T2 , T3;

 T1. gettime (2,45); //get T1

 T2. gettime (3,30); //get T2

 T3 . sum(T1,T2); //T3=T1+T2

 cout << “T1= “; T1.puttime (); //display T1

 cout << “T2= “; T2.puttime (); //display T2

 cout << “T3= “; T3.puttime (); //display T3

}

The output of program would be:

 T1 = 2 hours and 45 minutes

 T2 = 3 hours and 30 minutes

 T3 = 6 hours and 15 minutes

