
2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Queue

1

Queue

1.Introduction

 Queues are useful to solve various system programs. Some simple applications of queues in

our everyday life as well as in computer science.

Suppose there are a number of customers in front of a counter to get service (say, to collect

tickets or to withdraw/deposit money in a teller of a bank). The customers are forming a queue

and they will be served in the order they arrived, that is, a customer who comes first will be

served first.

2 .Definition

Like a stack, a queue is an ordered collection of homogeneous data elements; in contrast with

the stack, here, insertion and deletion operations take place at two extreme ends. A queue is

also a linear data structure like an array, a stack and a linked list where the ordering of

elements is in a-linear fashion. The only difference between a stack and a queue is that in the

case of stack insertion and deletion (PUSH and POP) operations are at one end (TOP) only, but

in a queue insertion (called ENQUEUE) and deletion (called DEQUEUE) operations take place at

two ends called the REAR and FRONT of the queue, respectively. Figure represents a model of a

queue structure. Queue is also termed first-in first-out (FIFO)

There are several operations performed in the queue:

• Firstly the queue is initialized to zero (i.e. empty).
• Determine whether the queue is empty or not.
• Determine if the queue is full or not.
• Insertion of the new element from the rear end (Enqueue).
• Deletion of the element from the front end (Dequeue).

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Queue

2

Applications Of Queue

Let us discuss the various applications of the queue data structure below.

1.The queue data structure is used in various CPU and disk scheduling. Here we have multiple

tasks requiring CPU or disk at the same time. The CPU or disk time is scheduled for each task

using a queue.

2.The queue can also be used for print spooling wherein the number of print jobs is placed in a

queue.

3.Handling of interrupts in real-time systems is done by using a queue data structure. The

interrupts are handled in the order they arrive.

4.Breadth-first search in which the neighboring nodes of a tree are traversed before moving on

to next level uses a queue for implementation.

5.Call center phone systems use queues to hold the calls until they are answered by the service

representatives.

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Queue

3

Basic Operations

1. enqueue() − add (store) an item to the queue.

2. dequeue() − remove (access) an item from the queue.

Enqueue Operation

Queues maintain two data pointers, front and rear. Therefore, its operations are

comparatively difficult to implement than that of stacks. The following steps should be

taken to enqueue (insert) data into a queue –

 Step 1 − Check if the queue is full.

Step 2 − If the queue is full, produce overflow error and exit.

Step 3 − If the queue is not full, increment rear pointer to point the next empty space. Step

Step 4 − Add data element to the queue location, where the rear is pointing.

Step 5 − return success.

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Queue

4

Dequeue Operation

Accessing data from the queue is a process of two tasks − access the data front is pointing and

remove the data after access. The following steps are taken to perform dequeue operation

Step 1 − Check if the queue is empty.

Step 2 − If the queue is empty, produce underflow error and exit.

Step 3 − If the queue is not empty, access the data where front is pointing.

Step 4 − Increment front pointer to point to the next available data element

Step 5 − Return success

