
Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

1

Lecture 4

CONSTRUCTORS AND DESTRUCTORS

4.1 Introduction
C++ provides a special member function called the constructor

which enables an object to initialize itself when it is created. This is known

as automatic initialization of objects. It also provides another member

function called the destructor that destroys the objects when they are no

longer required.

4.2 constructors
 A constructor is a ‘special’ member function whose task is to initialize

the objects of its class. A constructor is a member function that is

executed automatically whenever an object is created. It is special

because its name is the same as the class name. The constructor is invoked

whenever an object of its associated class is created. It is called constructor

because it construct the values of data members of the class.

A constructor is declared and defined as follows:

 // class with a constructor

 class integer

 {

 int m , n;

 public:

 integer (void); // constructor declared

 …….

 ……

 };

 integer:: integer (void) // constructor defined

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

2

 {

 m=0; n=0;

 }

When a class contains a constructor like the one defined above, it is

guaranteed that an object created by the class will be initialized

automatically. For example, the declaration

integer int1; //object int1 created

Not only creates the object int1 of type integer but also initializes its data

member's m and n to zero.

 A constructor that accepts no parameters is called the default constructor.

The default constructor for class A is A::A(). If no such constructor is

defined, then the compiler supplies a default constructor. Therefore a

statement such as (A a;)

Invokes the default constructor of the compiler to create the object a.

The constructor functions have some special characteristics:

 They should be declared in the public section.

 They are invoked automatically when the objects are created.

 They do not have return types, not even void and therefore, they cannot

return values.

 They cannot be inherited, though a derived class can call the base class

constructor.

 Like other C++ functions, they can have default arguments.

 We can be defined as inline function

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

3

4.3 Parameterized Constructors
The constructor integer (), defined above, initializes the data

members of all the objects to zero. However, in practice it may be necessary

the various data elements of different objects with different values when

they are created. C++ permits us to achieve this objective by passing

arguments to the constructor function when the objects are created.

 class integer

 {

 int m , n;

 public:

 integer (int x , int y); // parameterized constructor

 …….

 ……

 };

 integer:: integer (int x , int y) // constructor defined

 {

 m = x; n = y;

 }

In above program we must pass the initial values as arguments to the

constructor function when an object is declared.

 This can be done in two ways:

 By calling the constructor explicitly.

 By calling the constructor implicitly.

The following declaration illustrates the first method:

 integer int1= integer(0,150); //explicit call

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

4

This statement creates an integer object int1 and passes the values 0 and

150 to it.

The second is implemented as follows:

 integer int1(0,150); //implicit call (shorthand)

// Class with Constructors //

#include <iostream>

using namespace std;

class integer

{

 int m , n;

 public:

 integer (int , int); //constructor declared

 void display (void);

};

integer :: integer (int x , int y) // constructor defined

 {

 m = x; n = y;

 }

void integer :: display (void)

 {

 cout << ” m = “ << m << “\n”;

 cout << ” n = “ << n << “\n”;

 }

main ()

{

 integer int1(0,100); //implicit call

 integer int2= integer(25,75); //explicit call

 cout << “\n OBJECT1” << “\n”;

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

5

 int1.display();

 cout << “\n OBJECT2” << “\n”;

 int2.display();

}

The output of above program is:

 OBJECT1

 m = 0

 n= 100

 OBJECT2

 m = 25

 n= 75

Example:-This example, COUNTER, provides a counter variable that

can be modified only through its member functions.

// counter.cpp

// object represents a counter variable

#include <iostream>

using namespace std;

class Counter

{ private:

int count; //count

public:

Counter (): count (0) //constructor

{ /*empty body*/ }

void inc_count() //increment count

{ count++; }

int get_count() //return count

{ return count; }

};

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

6

main()

{

Counter c1, c2; //define and initialize

cout << “\nc1=” << c1.get_count(); //display

cout << “\nc2=” << c2.get_count();

c1.inc_count(); //increment c1

c2.inc_count(); //increment c2

c2.inc_count(); //increment c2

cout << “\nc1=” << c1.get_count(); //display again

cout << “\nc2=” << c2.get_count(); cout << endl;

}

The Counter class has one data member: count, of type unsigned int (since

the count is always positive).

It has three member functions:

1. the constructor Counter(), which we’ll look at in a moment;

2. inc_count(), which adds 1 to count;

3. get_count(), which returns the current value of count.

Initializer List

One of the most common tasks a constructor carries out is initializing

data members. In the

Counter class the constructor must initialize the count member to 0. One of

the most common tasks a constructor carries out is initializing data

members. In the Counter class the constructor must initialize the count

member to 0. If multiple members must be initialized, count()

{count = 0; }

However, this is not the preferred approach (although it does work). Here’s

how you should initialize a data member:

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

7

count() : count(0)

{ }

The initialization takes place following the member function declaratory but

before the function body. It’s preceded by a colon. The value is placed in

parentheses following the member data.

If multiple members must be initialized, they’re separated by commas. The

result is the initializer list (sometimes called by other names, such as the

member-initialization list).

some Class() : m1(7), m2(33), m2(4) ← initializer list

{ }

Why not initialize members in the body of the constructor? The reasons are

complex, but have to do with the fact that members initialized in the

initializer list are given a value before the constructor even starts to execute.

This is important in some situations. For example, the initializer list is the

only way to initialize const member data and references.

Actions more complicated than simple initialization must be carried out in

the constructor body, as with ordinary functions. They’re separated by

commas. The result is the initialize list:

Some Class (): m1(7), m2(33), m3(4) ← initialize list

{ }

Counter Output

 The main() part of this program exercises the Counter class by

creating two counters, c1 and c2. It causes the counters to display their

initial values, which—as arranged by the constructor—are 0. It then

increments c1 once and c2 twice, and again causes the counters to display

themselves (non-criminal behavior in this context). Here’s the output:

c1=0

c2=0

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

8

c1=1

c2=2

Example:-

#include <iostream>

using namespace std;

class operations

{

float a,b,c; int ch;

public:

operations();

void result();

};

operations::operations()

{

cout<<"Mathematical Operations \n";

cout<<" 1- Addition \n";

cout<<" 2- Subtraction \n";

cout<<" 3- Multiplication \n";

cout<<" 4- Division \n";

 cout<<" Please Enter your choice : \n";

 cin>>ch;

cout<<" Please Enter two Values a and b \n";

cin>>a>>b;

}

void operations::result()

{

switch (ch)

{

case 1: c=a+b; cout<<a<<"+"<<b<<"="<<c<<endl;break;

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

9

case 2 :c=a-b;cout<<a<<"-"<<b<<"="<<c<<endl; break;

case 3: c=a*b;cout<<a<<"*"<<b<<"="<<c<<endl; break;

case 4: if(b!=0){ c=a/b;cout<<a<<"/"<<b<<"="<<c<<endl;}

 else cout<<"the result of division is infinite ";

defult :cout<< "error choice";

}

}

void main()

{

int key;

do

{ operations op;

op.result();

 cout <<"to terminate program write key= 0 otherwise enter any value to

key \n";

 cin>>key; } while (key! =0);}

4.4 Destructors
A destructor, as name implies, is used to destroy the objects that have

been created by a constructor. Like a constructor, the destructor is a

member function whose name is the same as the class name but is preceded

by a tilde (~). For example, the destructor for the class integer can be

defined as shown below:

 ~integer() { }

A destructor never takes any argument nor does it return any value. It will

be invoked implicitly by the compiler upon exit from the program (or block

or function as the case may be) to clean up storage that is no longer

accessible.

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

10

// implementation of destructors //

#include <iostream>

using namespace std;

int count=0;

class alpha

{

 public:

 alpha()

 {

 count++;

 cout<< “\nNO.of object created “ << count;

 }

 ~alpha()

 {

 cout<< “\nNO.of object destroyed “ << count ;

 count--;

 }

 };

main()

{

 cout<< “\n\nEnter Main\n;

 alpha A1,A2,A3,A4;

 {

 cout << “\n\nEnter Block1\n”;

 alpha A5;

 }

 {

 cout << “\n\nEnter Block2\n”;

 alpha A6;

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

11

 }

 cout<< “\n\nRE-Enter Main\n;

}

 الحل بطریقة ثانیة

#include <iostream>

#include <conio.h>

using namespace std;

int count=0;

class alpha

{

 public:

 alpha()

 {

 count++;

 cout<< "\nNO.of object created " << count ;

 }

 ~alpha()

 {

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

12

 cout<< "\n NO.of object destroyed " << count ;

 count--;

 }

 };

main()

{

 { cout<< "\n\nEnter Main\n";

 alpha A1,A2,A3,A4;

 cout << "\n\nEnter Block1\n";

 alpha A5;

 cout << "\n\nEnter Block2\n";

 alpha A6;

 cout<< "\n\nRE-Enter Main\n";

 }

 getch();

}

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

13

Note: - As the objects are created and destroyed, they increase and

decrease the count. Notice that after the first group of objects is

created, A5 is created, and then destroyed, A6 is created, and then

destroyed. Finally, the rest of the objects are also destroyed. When

the closing brace of a scope is encountered, the destructors for

each object in the scope are called. Note that the objects are

destroyed in the reverse order of creation.

4.5 Multiple Constructors in A Class
 So far we have used two kinds of constructors. They are:

 integer(); //No arguments

 integer(int , int); //two arguments

In the first case, the constructor itself supplies the data values and no values

are passed by the calling program. In second case, the function call passes

the appropriate value from main (). C++ permits us to use both these

constructors in the same class. For example, we could define a class as

follows:

 class integer

 {

 int m,n;

 public:

 integer() { m=0; n=0; } //constructor 1

 integer(int a , int b)

 {m = a ; n = b;} //constructor 2

 integer(integer &i)

 {m = i . m ; n = i . n;} //constructor 3

 };

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

14

This declares three constructors for an integer object. The first

constructor receives no arguments, the second, receivers' two integer

arguments, and the third receives one integer object as an argument. For

example, the declaration:

 integer l1;

Would automatically invoke the first constructor and the set both m and n

of l1 to zero. The statement

 integer l2 (20 , 40);

Would call the second constructor, which will initialize the data members

m and n of l2 to 20 and 40 respectively. Finally, the statement

 integer l3 (l2);

Would invoke the third construct which copies the value of l2 into l3. That

is, it sets the value of every data element of l3 to the value of corresponding

data element of l2. Such a constructor is called the copy constructor.

When more than one constructor function is defined in a class, we say that

the constructor is overloaded.

// Overloading Constructor //

Example:- Create a class that imitates part of the functionality of the

basic data type int. Call the class Int (note different capitalization). The

only data in this class is an int variable. Include member functions to

initialize an Int to 0, to initialize it to an int value, to display it (it looks

just like an int), and to add two Int values.

Write a program that exercises this class by creating one uninitialized

and two initialized Int values, adding the two initialized values and

placing the response in the uninitialized value, and then displaying this

result.(Instead of having z=x+y, and x,y and z are int , we could have

z.add(x,y) and x,y and z are of type Int.)

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

15

Solution:-

// ex6_1.cpp

// uses a class to model an integer data type

#include <iostream>

using namespace std;

class Int //(not the same as int)

{

private:

int i;

public:

Int() //create an Int

{ i = 0; }

Int(int X) //create and initialize an Int

{ i = X; }

void add(Int i2, Int i3) //add two Ints

{ i = i2.i + i3.i; }

void display() //display an Int

{ cout << i; }

};

void main()

{ Int Int1(7); //create and initialize an Int

Int Int2(11); //create and initialize an Int

Int Int3; //create an Int

Int3.add(Int1, Int2); //add two Ints

cout << “\nInt3 = “; Int3.display(); cout << endl; }

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

16

4.6 Objects as Function Arguments
Our next program adds some new aspects of classes: constructor

overloading, defining member functions outside the class, and perhaps most

importantly objects as function arguments. Here’s the listing for

ENGLCON:

// englcon.cpp

// constructors, adds objects using member function

#include <iostream>

using namespace std;

class Distance //English Distance class

{ private:

int feet;

float inches;

public: //constructor (no args)

Distance() : feet(0), inches(0.0)

{ }

Distance(int ft, float in) : feet(ft), inches(in) //constructor (two args)

{ }

void getdist() //get length from user

{

cout << "\nEnter feet: "; cin >> feet;

cout << "Enter inches: "; cin >> inches;

}

void showdist() //display distance

{ cout << feet << "\'-" << inches << '\"';}

void Distance::add_dist(Distance d2, Distance d3)

{ inches = d2.inches + d3.inches; //add the inches

feet = 0; //(for possible carry)

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

17

if(inches >= 12.0) //if total exceeds 12.0,

{ //then decrease inches

inches -= 12.0; //by 12.0 and

feet++; //increase feet

} //by 1

feet += d2.feet + d3.feet;

} //add the feet

};

main()

{ Distance dist1, dist3; //define two lengths

Distance dist2(11, 6.25); //define and initialize dist2

dist1.getdist(); //get dist1 from user

dist3.add_dist(dist1, dist2); //dist3 = dist1 + dist2 //display all lengths

cout << "\ndist1 = "; dist1.showdist();

cout << "\ndist2 = "; dist2.showdist();

cout << "\ndist3 = "; dist3.showdist();

cout << endl; }

This program starts with a distance dist2 set to an initial value and adds to it

a distance dist1, whose value is supplied by the user, to obtain the sum of

the distances. It then displays all three distances:

Enter feet: 17

Enter inches: 5.75

dist1 = 17’-5.75”

dist2 = 11’-6.25”

dist3 = 29’-0”

It’s convenient to be able to give variables of type Distance a value when

they are first created. That is, we would like to use definitions like:

Distance width (5, 6.25);

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

18

which defines an object, width, and simultaneously initializes it to a value

of 5 for feet and 6.25 for inches. To do this we write a constructor like this:

Distance (int ft, float in): feet (ft), inches (in) { }

This sets the member data feet and inches to whatever values are

passed as arguments to the constructor.

In that program there was no constructor, but our definitions worked just

fine. How could they work without a constructor? Because an implicit no-

argument constructor is built into the program automatically by the

compiler and it’s this constructor that created the objects, even though we

didn’t define it in the class.

This no-argument constructor is called the default constructor. Often we

want to initialize data members in the default (no-argument) constructor as

well. If we let the default constructor do it, we don’t really know what

values the data members may be given. If we care what values they may be

given, we need to explicitly define the constructor. In ENGLECON we

show how this looks:

Distance() : feet(0), inches(0.0) //default constructor { }

The data members are initialized to constant values, in this case the

integer value 0 and the float value 0.0, for feet and inches respectively.

Now we can use objects initialized with the no-argument constructor and be

confident that they represent no distance (0 feet plus 0.0 inches) rather than

some arbitrary value.

Since there are now two explicit constructors with the same name,

Distance(), we say the constructor is overloaded. Which of the two

constructors is executed when an object is created depends on how many

arguments are used in the definition:

Distance length; // calls first constructor

Distance width (11, 6.0); // calls second constructor

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

19

Member Functions Defined Outside the Class

In ENGLCON the add_dist() function is defined following the class

definition.

//add lengths d2 and d3

void Distance::add_dist(Distance d2, Distance d3)

{

inches = d2.inches + d3.inches; //add the inches

feet = 0; //(for possible carry)

if(inches >= 12.0) //if total exceeds 12.0,

{ //then decrease inches

inches -= 12.0; //by 12.0 and

feet++; //increase feet

} //by 1

feet += d2.feet + d3.feet; //add the feet

}

The declarator in this definition contains some unfamiliar syntax. The

function name, add_dist(), is preceded by the class name, Distance, and a

new symbol—the double colon (::). This symbol is called the scope

resolution operator. It is a way of specifying what something is associated

with.

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

20

4.7 copy constructor
A copy constructor is used to declare and initialize an object from

another object. For example, the statement

 integer L2(L1);

Would define the object L2 and at the same time initialize it to the value of

L1. Another form of this statement is

 integer L2=L1;

// copy constructor //

#include <iostream>

using namespace std;

class code

{

 int id;

 public:

 code() {} // constructor

 code (int a) {id = a;} //constructor again

 code (code & x) //copy constructor

 {

 id = x . id;

 }

 void display(void)

 { cout << id; }

 };

main()

{

 code A(100);

 code B(A);

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

21

 code C=A;

 code D;

 D=A;

 cout<<”\n id of A: “; A.display();

 cout<<”\n id of B: “; B.display();

 cout<<”\n id of C: “; C.display();

 cout<<”\n id of D: “; D.display();

}

// program //

ecopycon.cpp

// initialize objects using default copy constructor

#include <iostream>

using namespace std;

class Distance //English Distance class

{

private:

int feet;

float inches;

public:

//constructor (no args)

Distance() : feet(0), inches(0.0)

{ }

//Note: no one-arg constructor

//constructor (two args)

Distance(int ft, float in) : feet(ft), inches(in)

{ }

void getdist() //get length from user

{

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

22

cout << “\nEnter feet: “; cin >> feet;

cout << “Enter inches: “; cin >> inches;

}

void showdist() //display distance

{ cout << feet << “\’-” << inches << ‘\”’; }

};

int main()

{

Distance dist1(11, 6.25); //two-arg constructor

Distance dist2(dist1); //one-arg constructor

Distance dist3 = dist1; //also one-arg constructor

//display all lengths

cout << “\ndist1 = “; dist1.showdist();

cout << “\ndist2 = “; dist2.showdist();

cout << “\ndist3 = “; dist3.showdist();

cout << endl;

return 0;

}

ecopycon.cpp

// initialize objects using default copy constructor

#include <iostream>

using namespace std;

class Distance //English Distance class

{

private:

int feet;

float inches;

public:

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

23

//constructor (no args)

Distance() : feet(0), inches(0.0)

{ } //Note: no one-arg constructor

Distance(int ft, float in) : feet(ft), inches(in) //constructor (two args)

{ }

void getdist() //get length from user

{

cout << “\nEnter feet: “; cin >> feet; cout << “Enter inches: “; cin >>

inches; }

void showdist() //display distance

{ cout << feet << “\’-” << inches << ‘\”’; }

};

void main()

{

Distance dist1(11, 6.25); //two-arg constructor

Distance dist2(dist1); //one-arg constructor

Distance dist3 = dist1; //also one-arg constructor

//display all lengths

cout << “\ndist1 = “; dist1.showdist(); cout << “\ndist2 = “;

dist2.showdist();

cout << “\ndist3 = “; dist3.showdist(); cout << endl; }

 اتلقائی تنفذ دالة عن عبارة ھي استدعاء أي غیر من البرنامج تشغیل عند -ء:البنا دالة

 -:أخرى بصورة أو

 معین صنف من كائن اشتقاق عند مباشرة استدعاؤھا یتم دالة عن عبارة ھي

 - :البناء دالة على مثال

#include<iostream>

using namespace std;

class myclass

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

24

{

int a;

public:

my class(); // constructor function

void show();

};

myclass::myclass()

{

cout<<"constructor function \n";

a=10;

}

void myclass::show()

{

cout<<a;

}

int main()

{

myclass ob;

ob.show();

return 0;}

 نھایة عند ولكن صنف من كائن اشتقاق عند مباشرة استدعاؤھا یتم دالة عن عبارة ھي - :الھدم دالة

 . البرنامج

 -:والھدم البناء لدوال توضیحي مثال

#include<iostream>

#include<stdlib.h>

using namespace std;

class x

{

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

25

public:

x();// بناء دالة

~x();// ھدم دالة

};

x::x()

{

cout<<"constructor is called \n";

}

x::~x()

{

cout<<"destructor is called \n";

system("PAUSE");

}

int main()

{

x x1,x2;

return 0;}

 تلقائیة وباورة الكائن اشتقاق عند البناء دالة استدعاء یتم - 1

 البرنامج نھایة عند ولكن تلقائیة باورة أیضا استدعاؤھا یتم الھدم الةد - 2

 الھدم ودالة البناء دالة یستدعي كائن كل - 3

 -:والھدم البناء دوال خواص

 (~) بعلامة تسبق الھدم دالة ولكن الانف اسم نفس تحمل - 1

 public العام الحمایة مستوى في تعریفھم یتم - 2

 بناء دالة من أكثر إنشاء یمكن - 3

 فقط واحدة ھدم دالة إنشاء یمكن - 4

 رجوع أنواع لھما لیس - 5

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

26

 مدصلین لعددین) القسمة , الضرب , الارح, الجمع(الأساسیة العملیات بإیجاد یقوم برنامج - :مثال

 .البناء دالة باستخدام المستخدم قبل من

#include<iostream>

using namespace std;

class operations

{

float a,b,c; int

public:

operations();

void result();

};

operations::operations()

{

cout<<"Mathematical Operations \n";

cout<<" 1- Addition \n";

cout<<" 2- Subtraction \n";

cout<<" 3- Multiplication \n";

cout<<" 4- Division \n";

cout<<" Please Enter Tow Values a and b \n";

cin>>a>>b;

}

void operations::result()

{

c=a+b;

cout<<a<<"+"<<b<<"="<<c<<"\n";

c=a-b;

cout<<a<<"-"<<b<<"="<<c<<"\n";

c=a*b;

cout<<a<<"*"<<b<<"="<<c<<"\n";

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

27

if(b!=0)

{

c=a/b;

cout<<a<<"/"<<b<<"="<<c<<"\n";

}

else

cout<<"the result of division is infinite \n";

}

int main()

{

operations op;

op.result();

return 0;

}

 في parameters المعاملات من نوع أي نستخدم أن یمكن -:المعاملات تستخدم التي البناء دالة

 المعلنة البناء دالة في الضروریة المعاملات عدد إضافة صلال من وذلك البناء دالة داصل

 -:مثال

#include<iostream>

using namespace std;

class myclass

{

int a,b;

public:

myclass(int,int);

void show();

};

myclass::myclass(int x,int y)

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

28

{

cout<<"constructor function \n";

a=x;

b=y;

}

void myclass::show()

{

cout<<a<<"\t"<<b<<"\n";

}

int main()

{

myclass ob(4,7);

ob.show();

return 0;

}

