Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

Lecture 4
CONSTRUCTORS AND DESTRUCTORS

4.1 Introduction

C++ provides a special member function called the constructor
which enables an object to initialize itself when it is created. This is known
as automatic initialization of objects. It also provides another member
function called the destructor that destroys the objects when they are no

longer required.

4.2 constructors

A constructor is a ‘special” member function whose task is to initialize
the objects of its class. A constructor is a member function that is
executed automatically whenever an object is created. It is special
because its name is the same as the class name. The constructor is invoked
whenever an object of its associated class is created. It is called constructor
because it construct the values of data members of the class.
A constructor is declared and defined as follows:

/I class with a constructor

class integer

{
int m,n;
public:
integer (void); // constructor declared
2

integer:: integer (void) // constructor defined

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief

Computer Science Department- Education College 2nd stage - Morning study
{
m=0; n=0;
¥

When a class contains a constructor like the one defined above, it is
guaranteed that an object created by the class will be initialized

automatically. For example, the declaration

integer intl; /lobject intl created

Not only creates the object intl of type integer but also initializes its data
member's m and n to zero.

A constructor that accepts no parameters is called the default constructor.
The default constructor for class A is A::A(). If no such constructor is
defined, then the compiler supplies a default constructor. Therefore a
statementsuchas (Aa;)

Invokes the default constructor of the compiler to create the object a.

The constructor functions have some special characteristics:

% They should be declared in the public section.

%+ They are invoked automatically when the objects are created.

 They do not have return types, not even void and therefore, they cannot
return values.

% They cannot be inherited, though a derived class can call the base class
constructor.

% Like other C++ functions, they can have default arguments.

«* We can be defined as inline function

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

4.3 Parameterized Constructors

The constructor integer (), defined above, initializes the data
members of all the objects to zero. However, in practice it may be necessary
the various data elements of different objects with different values when
they are created. C++ permits us to achieve this objective by passing

arguments to the constructor function when the objects are created.

class integer

{
int m,n;
public:

integer (intx,inty); // parameterized constructor
2
integer:: integer (int x, inty) /I constructor defined
{

m=Xx; n=y;
}

In above program we must pass the initial values as arguments to the
constructor function when an object is declared.

This can be done in two ways:

% By calling the constructor explicitly.

+ By calling the constructor implicitly.

The following declaration illustrates the first method:

integer intl=integer(0,150); //explicit call

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

This statement creates an integer object intl and passes the values 0 and
150 to it.
The second is implemented as follows:

integer int1(0,150); //implicit call (shorthand)

/I Class with Constructors //
#include <iostream>
using namespace std;

class integer

{
int m,n;
public:
integer (int, int); /lconstructor declared
void display (void);
2
integer :: integer (int x , inty) /I constructor defined
{
m=Xx; n=y;
}
void integer :: display (void)
{
Cout << ” m - 1] << m << ll\n’1;
Cout << ” n - 1] << n << ll\n’1;
}
main ()
{
integer int1(0,100); /limplicit call

integer int2= integer(25,75); /lexplicit call
cout << “\n OBJECT1” <<*\n”;

4

Object Oriented Programming (OOP)
Computer Science Department- Education College

Lecture Zahraa Salah Dhaief
2nd stage - Morning study

intl.display();
cout << “\n OBJECT2” << *\n”;
int2.display();
}
The output of above program is:
OBJECT1
m=20
n=100
OBJECT2
m =25
n=75

Example:-This example, COUNTER, provides a counter variable that

can be modified only through its member functions.

/l counter.cpp

// object represents a counter variable
#include <iostream>

using namespace std;

class Counter

{ private:

int count; //count

public:

Counter (): count (0) //constructor
{ /*empty body*/ }

void inc_count() //increment count
{ count++; }

int get_count() //return count

{ return count; }

%

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief

Computer Science Department- Education College 2nd stage - Morning study
main()

{

Counter c1, c2; /ldefine and initialize

cout << “\nc1=" << c1.get_count(); //display

cout << “\nc2=" << c2.get_count();

cl.inc_count(); /lincrement c1
c2.inc_count(); /lincrement c2
c2.inc_count(); /lincrement c2

cout << “\nc1=" << cl.get_count(); //display again

cout << “\nc2=" << ¢2.get_count(); cout << endl;

¥

The Counter class has one data member: count, of type unsigned int (since
the count is always positive).

It has three member functions:

1. the constructor Counter(), which we’ll look at in a moment;

2. inc_count(), which adds 1 to count;

3. get_count(), which returns the current value of count.

Initializer List

One of the most common tasks a constructor carries out is initializing
data members. In the
Counter class the constructor must initialize the count member to 0. One of
the most common tasks a constructor carries out is initializing data
members. In the Counter class the constructor must initialize the count
member to 0. If multiple members must be initialized, count()
{count=0;}
However, this is not the preferred approach (although it does work). Here’s

how you should initialize a data member:

6

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

count() : count(0)

{}

The initialization takes place following the member function declaratory but
before the function body. It’s preceded by a colon. The value is placed in
parentheses following the member data.

If multiple members must be initialized, they’re separated by commas. The
result is the initializer list (sometimes called by other names, such as the
member-initialization list).

some Class() : m1(7), m2(33), m2(4) « initializer list

{}

Why not initialize members in the body of the constructor? The reasons are
complex, but have to do with the fact that members initialized in the
initializer list are given a value before the constructor even starts to execute.
This is important in some situations. For example, the initializer list is the
only way to initialize const member data and references.

Actions more complicated than simple initialization must be carried out in
the constructor body, as with ordinary functions. They’re separated by
commas. The result is the initialize list:

Some Class (): m1(7), m2(33), m3(4) < initialize list

{}

Counter Output

The main() part of this program exercises the Counter class by
creating two counters, c1 and c2. It causes the counters to display their
initial values, which—as arranged by the constructor—are 0. It then
increments c1 once and c2 twice, and again causes the counters to display
themselves (non-criminal behavior in this context). Here’s the output:
cl=0
c2=0

Object Oriented Programming (OOP)
Computer Science Department- Education College

Lecture Zahraa Salah Dhaief
2nd stage - Morning study

cl=1

c2=2

Example:-

#include <iostream>

using namespace std;

class operations

{

float a,b,c; int ch;

public:

operations();

void result();

2

operations::operations()

{

cout<<"Mathematical Operations \n";
cout<<" 1- Addition \n";

cout<<" 2- Subtraction \n";

cout<<" 3- Multiplication \n";
cout<<" 4- Division \n";

cout<<" Please Enter your choice : \n";

cin>>ch;

cout<<" Please Enter two Values a and b \n";

cin>>a>>h;

¥

void operations::result()

{
switch (ch)

{

case 1: c=a+h; cout<<a<<"+"<<h<<"="<<c<<endl;break;

8

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

case 2 .c=a-b;cout<<a<<"-"<<p<<"="<<c<<endl; break;

case 3: c=a*b;cout<<a<<"*"'<<p<<"="<<c<<endl; break;

case 4: if(b!'=0){ c=a/b;cout<<a<<"/"<<b<<"="<<c<<endl;}
else cout<<"the result of division is infinite ";

defult :cout<< "error choice";

}

}

void main()

{

int key;

do

{ operations op;

op.result();

cout <<"to terminate program write key= 0 otherwise enter any value to
key \n";

cin>>key; } while (key! =0);}

4.4 Destructors

A destructor, as name implies, is used to destroy the objects that have

been created by a constructor. Like a constructor, the destructor is a

member function whose name is the same as the class name but is preceded

by a tilde (~). For example, the destructor for the class integer can be

defined as shown below:

~integer() { }
A destructor never takes any argument nor does it return any value. It will
be invoked implicitly by the compiler upon exit from the program (or block
or function as the case may be) to clean up storage that is no longer

accessible.

Object Oriented Programming (OOP)
Computer Science Department- Education College

Lecture Zahraa Salah Dhaief
2nd stage - Morning study

/l implementation of destructors //
#include <iostream>
using namespace std;
int count=0;
class alpha
{
public:
alpha()
{

count++;

cout<< “\nNO.of object created “ << count;

}
~alpha()
{
cout<< “\nNO.of object destroyed “ << count ;
count--;
}
2
main()
{
cout<< “\n\nEnter Main\n;
alpha A1,A2,A3,A4;
{
cout << “\n\nEnter Block1\n”;
alpha A5;
}
{

cout << “\n\nEnter Block2\n’;
alpha AG;

10

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

¥

cout<< “\n\nRE-Enter Main\n;

[C:\Users\8930\Desktop\programs\aaaZZ\bin\Debug\aaaZZ.ex— rom @[ﬂh

Enter Main
NO.of obhject created®
NO.of object createdl
NO.of obhject created2 =
NO.of object created3
Enter Blockl

NO.of object created4
NO.of obhject destroyedS

Enter Block2

NO.of object created4
NO.of obhject destroyedS

RE-Enter Main

NO.of obhject destroyed4

NO.of obhject destroyed3

NO.of obhject destroyed2

NO.of obhject destroyedl

Process returned 8 (Bx8)> execution time : 0.172 s
Press any key to continue.

A A8y g Jad)
#include <iostream>
#include <conio.h>
using namespace std;
int count=0;
class alpha
{
public:
alpha()
{
count++;
cout<< "\nNO.of object created " << count ;
}
~alpha()
{

11

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

cout<< "\n NO.of object destroyed " << count ;

count--

2
main()
{
{ cout<< "\n\nEnter Main\n";
alpha A1,A2,A3,A4;
cout << "\n\nEnter Block1\n";
alpha A5;
cout << "\n\nEnter Block2\n";
alpha AG;
cout<< "\n\nRE-Enter Main\n";
}
getch();
}
¢ CUsers\8930Desktop\programslaaa22\bin Debug\aaa22.exe | = s S

nter Main

ohject created 1

ohject created 2

ohject created 3 v
ohject created 4

Blocki

ohject created 5

Block?2

ohject created 6

RE-Enter Main

.of ohject destroyed 6
.of ohject destroyed 5
.of ohject destroyed 4
.of ohject destroyed 3
.of ohject destroyed 2
.of ohject destroyed 1_

12

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

Note: - As the objects are created and destroyed, they increase and
decrease the count. Notice that after the first group of objects is
created, A5 is created, and then destroyed, A6 is created, and then
destroyed. Finally, the rest of the objects are also destroyed. When
the closing brace of a scope is encountered, the destructors for
each object in the scope are called. Note that the objects are

destroyed in the reverse order of creation.

4.5 Multiple Constructors in A Class
So far we have used two kinds of constructors. They are:
integer(); //No arguments
integer(int, int); //two arguments
In the first case, the constructor itself supplies the data values and no values
are passed by the calling program. In second case, the function call passes
the appropriate value from main (). C++ permits us to use both these
constructors in the same class. For example, we could define a class as
follows:
class integer
{
int m,n;
public:
integer() { m=0; n=0;} //constructor 1
integer(inta, inth)
{m=a;n=Dhb;} //constructor 2
integer(integer &i)

{m=1i.m;n=i.n} /lconstructor 3

13

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

This declares three constructors for an integer object. The first
constructor receives no arguments, the second, receivers' two integer
arguments, and the third receives one integer object as an argument. For
example, the declaration:

integer I1;
Would automatically invoke the first constructor and the set both m and n
of 11 to zero. The statement

integer 12 (20, 40);
Would call the second constructor, which will initialize the data members
m and n of 12 to 20 and 40 respectively. Finally, the statement

integer 13 (12);
Would invoke the third construct which copies the value of 12 into I3. That
is, it sets the value of every data element of I3 to the value of corresponding
data element of 12. Such a constructor is called the copy constructor.
When more than one constructor function is defined in a class, we say that

the constructor is overloaded.

I/l Overloading Constructor //

Example:- Create a class that imitates part of the functionality of the
basic data type int. Call the class Int (note different capitalization). The
only data in this class is an int variable. Include member functions to
initialize an Int to 0, to initialize it to an int value, to display it (it looks
just like an int), and to add two Int values.

Write a program that exercises this class by creating one uninitialized
and two initialized Int values, adding the two initialized values and
placing the response in the uninitialized value, and then displaying this
result.(Instead of having z=x+y, and x,y and z are int , we could have

z.add(x,y) and x,y and z are of type Int.)

14

Object Oriented Programming (OOP)
Computer Science Department- Education College

Lecture Zahraa Salah Dhaief
2nd stage - Morning study

Solution:-

/Il ex6_1.cpp

/I uses a class to model an integer data type
#include <iostream>

using namespace std;

class Int //(not the same as int)

{

private:

inti;

public:

Int() //create an Int

{i=0;}

Int(int X) //create and initialize an Int
{i=X;}

void add(Int i2, Int i3) //add two Ints
{i=i2i+i3.i;}

void display() //display an Int

{cout<<i;}

2

void main()

{ Int Int1(7); //create and initialize an Int
Int Int2(11); /lcreate and initialize an Int
Int Int3; /lcreate an Int

Int3.add(Intl, Int2); //add two Ints

cout << “\nInt3 = “; Int3.display(); cout <<endl; }

15

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

4.6 Objects as Function Arguments
Our next program adds some new aspects of classes: constructor
overloading, defining member functions outside the class, and perhaps most
importantly objects as function arguments. Here’s the listing for
ENGLCON:
I/ englcon.cpp
Il constructors, adds objects using member function
#include <iostream>
using namespace std;
class Distance //English Distance class
{ private:
int feet;
float inches;
public: //constructor (no args)
Distance() : feet(0), inches(0.0)
{}

Distance(int ft, float in) : feet(ft), inches(in) //constructor (two args)

{}
void getdist() //get length from user

{

cout << "\nEnter feet: "; cin >> feet;

cout << "Enter inches: "; cin >> inches;

}

void showdist() //display distance

{ cout << feet << "\'-" <<'inches << '\"";}

void Distance::add_dist(Distance d2, Distance d3)
{ inches = d2.inches + d3.inches; //add the inches

feet = 0; //(for possible carry)

16

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

if(inches >= 12.0) //if total exceeds 12.0,

{ //then decrease inches

inches -=12.0; //by 12.0 and

feet++; //increase feet

}/by 1

feet += d2.feet + d3.feet;

} //add the feet

2

main()

{ Distance dist1, dist3; //define two lengths
Distance dist2(11, 6.25); //define and initialize dist2
dist1.getdist(); //get distl from user
dist3.add_dist(distl, dist2); //dist3 = distl + dist2 //display all lengths
cout << "\ndistl ="; distl.showdist();

cout << "\ndist2 = "; dist2.showdist();

cout << "\ndist3 = "; dist3.showdist();

cout << endl; }

This program starts with a distance dist2 set to an initial value and adds to it
a distance distl, whose value is supplied by the user, to obtain the sum of
the distances. It then displays all three distances:

Enter feet: 17

Enter inches: 5.75

distl = 17’-5.75”

dist2 = 11’-6.25”

dist3 = 29’-0”

It’s convenient to be able to give variables of type Distance a value when
they are first created. That is, we would like to use definitions like:

Distance width (5, 6.25);

17

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

which defines an object, width, and simultaneously initializes it to a value
of 5 for feet and 6.25 for inches. To do this we write a constructor like this:
Distance (int ft, float in): feet (ft), inches (in) { }

This sets the member data feet and inches to whatever values are
passed as arguments to the constructor.

In that program there was no constructor, but our definitions worked just
fine. How could they work without a constructor? Because an implicit no-
argument constructor is built into the program automatically by the
compiler and it’s this constructor that created the objects, even though we
didn’t define it in the class.

This no-argument constructor is called the default constructor. Often we
want to initialize data members in the default (no-argument) constructor as
well. If we let the default constructor do it, we don’t really know what
values the data members may be given. If we care what values they may be
given, we need to explicitly define the constructor. In ENGLECON we
show how this looks:

Distance() : feet(0), inches(0.0) //default constructor { }

The data members are initialized to constant values, in this case the
integer value 0 and the float value 0.0, for feet and inches respectively.
Now we can use objects initialized with the no-argument constructor and be
confident that they represent no distance (0 feet plus 0.0 inches) rather than
some arbitrary value.

Since there are now two explicit constructors with the same name,
Distance(), we say the constructor is overloaded. Which of the two
constructors is executed when an object is created depends on how many
arguments are used in the definition:

Distance length; // calls first constructor

Distance width (11, 6.0); // calls second constructor

18

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

Member Functions Defined Outside the Class
In ENGLCON the add_dist() function is defined following the class
definition.

/ladd lengths d2 and d3

void Distance::add_dist(Distance d2, Distance d3)
{

inches = d2.inches + d3.inches; //add the inches
feet = 0; //(for possible carry)

if(inches >= 12.0) //if total exceeds 12.0,

{ //then decrease inches

inches -=12.0; //by 12.0 and

feet++; //increase feet

}/by 1

feet += d2.feet + d3.feet; //add the feet

}

The declarator in this definition contains some unfamiliar syntax. The

function name, add_dist(), is preceded by the class name, Distance, and a

new symbol—the double colon (::). This symbol is called the scope

resolution operator. It is a way of specifying what something is associated

with.

void Distance::add_dist(Distance d2, Distance d3)

TN | T T
L Function arguments
Function name
— Scope resolution operator
Name of class of which function is a member
~— Return type

19

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

4.7 copy constructor
A copy constructor is used to declare and initialize an object from
another object. For example, the statement
integer L2(L1);
Would define the object L2 and at the same time initialize it to the value of
L1. Another form of this statement is
integer L2=L1;

Il copy constructor //
#include <iostream>

using namespace std;

class code
{
int id;
public:
code() {} I/ constructor
code (inta) {id = a;} /[constructor again
code (code & X) /lcopy constructor
{
id=x.id;
}

void display(void)
{ cout << id; }
¥
main()
{
code A(100);
code B(A);

20

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

code C=A;

code D;

D=A;

cout<<”\n id of A: “; A.display();
cout<<”\n id of B: *; B.display();
cout<<”\n id of C: *; C.display();
cout<<”\n id of D: “; D.display();

I/l program //

ecopycon.cpp

/ initialize objects using default copy constructor
#include <iostream>

using namespace std;

class Distance //English Distance class

{

private:

int feet;

float inches;

public:

/[constructor (no args)

Distance() : feet(0), inches(0.0)

{}

//Note: no one-arg constructor
//constructor (two args)

Distance(int ft, float in) : feet(ft), inches(in)
{}

void getdist() //get length from user

{

21

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

cout << “\nEnter feet: *; cin >> feet;

cout << “Enter inches: “; cin >> inches;

}

void showdist() //display distance

{ cout << feet << “\’-” <<inches << \"’; }

2

int main()

{

Distance dist1(11, 6.25); //two-arg constructor
Distance dist2(dist1); //one-arg constructor
Distance dist3 = dist1; //also one-arg constructor
/[display all lengths

cout << “\ndistl = *; distl.showdist();

cout << “\ndist2 = *; dist2.showdist();

cout << “\ndist3 = “; dist3.showdist();

cout << endl;

return O;

¥

ecopycon.cpp
/ initialize objects using default copy constructor
#include <iostream>
using namespace std;
class Distance //English Distance class
{
private:
int feet;
float inches;
public:
22

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

/[constructor (no args)
Distance() : feet(0), inches(0.0)
{} //Note: no one-arg constructor

Distance(int ft, float in) : feet(ft), inches(in) //constructor (two args)

{}

void getdist() //get length from user

{

cout << “\nEnter feet: “; cin >> feet; cout << “Enter inches: *“; cin >>
inches; }

void showdist() /[display distance

{ cout << feet << “\’-” << inches << ‘\"’; }

2

void main()

{

Distance dist1(11, 6.25); /ltwo-arg constructor
Distance dist2(distl1); /lone-arg constructor
Distance dist3 = dist1; //also one-arg constructor

/[display all lengths
cout << “\ndistl = *; dist1l.showdist(); cout << “\ndist2 = *;
dist2.showdist();

cout << “\ndist3 = “; dist3.showdist(); cout << endl; }

Lol 2ds dla e 3 e o sledinl ol e (e el yall Jusdii die -1p Ul A1)

-5 A B ey

(ra Chiia (e CAS Bl die 3 il la gle i) JhAlls e 3 ke oo

el A e Jha

#include<iostream>
using namespace std;

class myclass

23

Object Oriented Programming (OOP)
Computer Science Department- Education College

Lecture Zahraa Salah Dhaief
2nd stage - Morning study

{

int a;

public:

my class(); // constructor function
void show();

2

myclass::myclass()

{

cout<<"constructor function \n";
a=10;

}

void myclass::show()

{

cout<<a;

}

int main()
{

myclass ob;
ob.show();

return 0;}

g vie (S5 China (e (IS GBUELE) 2ie 3 58l W sle il 2By Al e 3 le o8 -1adgd) Ao

#include<iostream>
#include<stdlib.h>
using namespace std;
class x

{

24

el
-adgdl s sl J) sl ad ¢ Jlia

Object Oriented Programming (OOP)
Computer Science Department- Education College

Lecture Zahraa Salah Dhaief
2nd stage - Morning study

public:

X()i A ey

~X()il A 26

}

X X()

{

cout<<"constructor is called \n";
}

X::~X()

{

cout<<"destructor is called \n";
system("PAUSE");

}

int main()

{

X X1,X2;

return 0;}

Al 5 5l s A BlEE) ie eld) Al ele st oy -1
el Al wie (S0 Al 5 5Ly Lial W sle il oy aagll Ao -2
eA@J\ Z\J\J} <l alla Gc_..ﬁu:a s XK -3

-aagdls s Jlga palsa

public alall Lleall (5 slse A agly yal oy -2

25

sliy s (e ST L) Sy -3
Ladd 3aal 5 aaa Alla oL Sy -4

g2 g5l Legd Gl -5

Object Oriented Programming (OOP)
Computer Science Department- Education College

Lecture Zahraa Salah Dhaief
2nd stage - Morning study

Osleada (paand (Aandll | pial) | 7 Y1 cead) Yaauld) Cllead) slals a sy el -1l

#include<iostream>

using namespace std;

class operations

{

float a,b,c; int

public:

operations();

void result();

2

operations::operations()

{

cout<<"Mathematical Operations \n";
cout<<" 1- Addition \n";
cout<<" 2- Subtraction \n";
cout<<" 3- Multiplication \n";

cout<<" 4- Division \n";

cout<<" Please Enter Tow Values aand b \n";

cin>>a>>h;

¥

void operations::result()

{

c=atb;
cout<<a<<"+'"<<p<<"="<<c<<"\n";
c=a-b;
cout<<a<<"-"<<p<<"="<<c<<"\n";
c=a*b;
cout<<a<<"*'<<p<<"="<<c<<"\n";

26

Object Oriented Programming (OOP)
Computer Science Department- Education College

Lecture Zahraa Salah Dhaief
2nd stage - Morning study

if(b!=0)

{

c=a/b;
cout<<a<<"["<<b<<"="<<c<<"\n";
}

else

cout<<"the result of division is infinite \n";
}

int main()

{

operations op;

op.result();

return O;

¥

< parameters Gy PAPIN| I g Lﬁi PREGH O oS - eDlalaal) PRI gﬂ\ s L) dd)a
Alaall clil dla 84y 5 pall O lbaall 2ae ddla) Jua (e elld g oLl Ala Jaala

#include<iostream>

using namespace std;

class myclass

{

int a,b;

public:

myclass(int,int);

void show();

2

myclass::myclass(int x,int y)

27

- Jlia

Object Oriented Programming (OOP)
Computer Science Department- Education College

Lecture Zahraa Salah Dhaief
2nd stage - Morning study

{

cout<<"constructor function \n";
a=Xx;

b=y;

}

void myclass::show()

{
cout<<a<<"\t"<<p<<"\n";
}

int main()

{

myclass ob(4,7);
ob.show();

return O;

¥

28

