
Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

1

Lecture 5

INHERITANCE

5.1 Introduction

 Inheritance is probably the most powerful feature of object-oriented

programming, after classes themselves. Inheritance is the process of

creating new classes, called derived classes, from existing or base classes.

The mechanism of deriving a new class from an old one is called

inheritance (or derivation).

The derived class inherits all the capabilities of the base class but can add

embellishments and refinements of its own. The base class is unchanged by

this process. The inheritance relationship is shown in Figure 5.1.

FIGURE (5.1) Inheritance.

 Inheritance is an essential part of OOP. Reusing existing code saves

time and money and increases a program’s reliability.

 A programmer can use a class created by another person or company,

and, without modifying it, derive other classes from it that are suited to

particular situations.

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

2

 Figure 5.2 shows various form of inheritance. The direction of

arrow indicates the direction of inheritance.

 Single inheritance:- a derived class with only one base class.

 Multiple inheritance:- one derived class with several base classes.

 Hierarchical inheritance:- one base class may be inherited by more

than one derived class.

 Multilevel inheritance:- The mechanism of deriving a class from

another ‘derived class’.

A

B
a) Single inheritance

A B

C

b) Multiple inheritance

A

C D B

c) Hierarchical inheritance

A

C B

D

e) Hybrid inheritance

A

B

C

d) Multilevel inheritance

Fig (5.2) Forms of inheritance

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

3

5.2 Defining Derived Classes

A derived class is defined by specifying its relationship with the base

class in addition to its own details. The general form of defining a derived

class is:

The colon indicates that the derived-class-name is derived from the

base-class-name. The visibility mode is optional and, if present, may be

either private or public. The default visibility-mode is private. Visibility

mode specifies whether the features of the base class are private derived or

public derived.

Example:-

 class ABC : private XYZ // private derivation

 {

 members of ABC

 };

 class ABC : public XYZ // public derivation

 {

 members of ABC

 };

class derived-class-name : visibility-mode base-class-name

{

. . . . //

. . . . // members of derived class

. . . . //

};

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

4

 class ABC : XYZ // private derivation by default

 {

 members of ABC

 };

When a base class is privately inherited by a derived class, ‘public

members’ of the base class become ‘private members’ of the derived

class and therefore ‘public members’ of the base class can only be accessed

by member functions of the derived class.

 On other hand, when a base class is publicly inherited ‘public

members’ of the base class become ‘public members’ of the derived class

and therefore they are accessible to the objects of the derive class. In both

the cases, the private members are not inherited and therefore, the private

members of a base class will never become the members of its derive class.

5.3 Single Inheritance

Let as consider a simple example to illustrate inheritance. A base

class B and a derived class D.

class B contains : one private data member

 one public data member

 three public member functions

class D contains : one private data member and two public member

functions.

Example:- //Single Inheritance : Public

#include <iostream>

using namespace std;

class B

{

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

5

 int a; //private; not inheritable

 public:

 int b; //public ready for inheritance

 void get_ab();

 int get_a(void);

 void show_a(void);

};

class D : public B //public derivation

{

int c;

 public:

 void mul (void);

 void display (void);

};

// function defined //

void B :: get_ab(void)

{

a = 5; b = 10;

 }

int B :: get_a()

{

 return a;

 }

void B :: show_a()

{

cout << “a = “ << a << “\n”;

 }

void D :: mul ()

{

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

6

c = b * get_a ();

 }

void D :: display (void)

{

 cout << “ a= “ << get_a() << “\n”;

 cout << “ b= “ << b << “\n”;

 cout << “ c= “ << c << “\n”;

}

// main program //

int main()

{ D d;

 d.get_ab();

 d.mul();

 d.show_a();

 d.display();

 d.b=20;

 d.mul();

 d.display();

return 0;

}

The class D is a public derivation of the base class B. therefore, D

inherits all public members of B and retains their visibility. Thus a public

member of the base class B is also a public member of the derived class D.

the private member of B cannot be inherited by D. the class D, in effect,

will have more members than what it contains at the time of derivation as

shown in figure 5.3 a.

The output of program:

a=5

a=5

b=10

c=50

a=5

b=20

c=100

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

7

Although the data member ‘a’ is private in B and cannot be inherited,

objects of D are able to access it through an inherited member function of

B.

 Let as now consider the case of private derivation.

class B

{

 int a;

 public:

 int b;

 void get_ab();

 int get_a();

Class D

Private section

c

b

get_ab()

get_a()

show_a()

mul ()

display ()

B Inherited
from B

Fig 5.3 a Adding more members to a class
 (by public derivation)

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

8

 void show_a();

};

class D : private B //private derivation

{

 int c;

 public:

 void mul ();

 void display ();

};

the membership of the derived class D is shown in fig. 5.3 b

Fig 5.3 b Adding more members to a class
 (by private derivation)

Class D

Private section

c

b

get_ab()

get_a()

show_a()

mul ()

display ()

B Inherited
from B

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

9

In private derivation the public members of the base class become

private members of the derived class. Therefore, the objects of D cannot

have direct access to the public member functions of B.

The statements such as

 d . get_ab();

 d . get_a();

 d . show_a();

will not work. However, these functions can be used inside mul() and

display() like the normal functions as shown below:

 void mul ()

 {

 get_ab();

 c = b * get_a ();

 }

Example:- // single inheritance : private //

#include <iostream >

using namespace std;

class B

{

 int a; //private; not inheritable

 public:

 int b; //public ready for inheritance

 void get_ab();

 int get_a(void);

 void show_a(void);

};

class D : private B // private derivation

{ int c;

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

10

 public:

 void mul (void);

 void display (void);

};

// function defined //

void B :: get_ab(void)

{

 cout<<”Enter the values for a and b:”;

 cin>>a>>b;

}

int B :: get_a()

{

return a;

 }

void B :: show_a()

{

cout << “a = “ << a << “\n”;

 }

void D :: mul ()

{

 get_ab();

 c = b * get_a (); // ‘a’ cannot be used directly

}

void D :: display (void)

{

 show_a();

 cout << “ b= “ << b << “\n”;

 cout << “ c= “ << c << “\n”;

}

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

11

// main program //

int main()

{

 D d;

 d.mul();

 d.display();

 d.b=20; // won’t work; b has become private

 d.mul();

 d.display();

return 0;

}

5.4 The protected Access Specifier

 A private member of a base class cannot be inherited and therefore it is

not available for the derived class directly. To solve this problem, by

modifying the visibility limit of the private member by making it public.

This would make it accessible to all the other functions of the program, thus

eliminate the advantage of data hiding.

 C++ provides a third visibility modifier, protected, which serve a

limited purpose in inheritance. A member declared as protected is

accessible by the member functions within its class and any class

immediately derived from it. It cannot be accessed by the functions outside

these two classes. A class can now use all the three visibility modes as

illustrated below:

Class alpha

{

 private // optional

 ……… // visibile to member functions

 …….. // within its class

The output of program:

Enter the values for a and b:5 10

a=5

b=10

c=50

Enter the values for a and b:12 20

a=12

b=20

c=240

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

12

 protected :

 ……. // visibile to member functions

 …….. // of its own and derived class

 public:

 …….. // visible to all functions

 ……. // in the program

 };

Table 1: Inheritance and Accessibility

Access specifier Accessible from

own class

Accessible from

derived class

Accessible from

objects outside class

Public yes yes yes

Protected yes yes No

private yes No No

Figure 5.4: Access specifiers without inheritance

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

13

Figure 5.5: Access specifiers with inheritance

We can use inheritance to create a new class based on Counter,

without modifying counter itself. A new class, CountDn, that adds a

decrement operator to the Counter class:

5.5 The Unified Modeling Language (UML)

 The UML is a graphical “language” for modeling computer

programs. “Modeling” means to create a simplified representation of

something, as a blueprint models a house. The UML provides a way to

visualize the higher-level organization of programs without getting mired

down in the details of actual code.

In the UML, inheritance is called generalization, because the parent class is

a more general form of the child class. Or to put it another way, the child is

more specific version of the parent. The generalization in the COUNTEN

program is shown in Figure .5.6. Inheritance

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

14

In UML class diagrams, generalization is indicated by a triangular

arrowhead on the line connecting the parent and child classes. Remember

that the arrow means inherited from or derived from or is a more specific

version of. The direction of the arrow emphasizes that the derived class

refers to functions and data in the base class, while the base class has no

access to the derived class.

Notice that we’ve added attributes (member data) and operations (member

functions) to the classes in the diagram. The top area holds the class title,

the middle area holds attributes, and the bottom area is for operations.

Example:-

#include <iostream>

using namespace std;

class B

{

protected:

 int a; //private; not inheritable

 public:

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

15

 int b; //public ready for inheritance

 void get_ab();

 void show_a(void);

};

class D : public B //public derivation

{ int c;

 public:

 void mul (void);

 void display (void);

};

// function defined //

void B :: get_ab(void)

{ a = 5; b = 10; }

void B :: show_a()

{ cout << "a = " << a << "\n"; }

void D :: mul ()

{ c = b * a; }

void D :: display (void)

{

 cout << " a= " << a << "\n";

 cout << " b= " << b << "\n";

 cout << " c= " << c << "\n";

}

// main program //

main()

{ D d;

 d.get_ab();

 d.mul();

 d.show_a();

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

16

 d.display();

 d.b=20;

 d.mul();

 d.display();

}

Example:- Write a program to decrement the counter variable using

inheritance.Example 1:-Write a program to decrement the counter

#include <iostream >

using namespace std;

class Counter

{

protected:

int count; //count

public:

Counter (): count (0) //constructor

{ }

void inc_count() //increment count

{ count++; }

int get_count() //return count

{ return count; }

};

class CountDn : public Counter //derived class

{

public:

void dec_count()

{ count--; }

};

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

17

int main()

{

CountDn c1; //c1 of class CountDn

cout << "\nc1=" << c1.get_count(); //display

c1.inc_count(); //increment c1

c1.inc_count(); //increment c2

c1.inc_count(); //increment c2

cout << "\n after increment c1=" << c1.get_count(); //display again

c1.dec_count();

c1.dec_count();

cout << "\n after decrement c1=" << c1.get_count(); //display again

return 0;

}

Output of Example

In main() we increment c1 three times, print out the resulting value,

decrement c1 twice, and finally print out its value again. Here’s the output:

c1=0 ← after initialization

c1=3 ← after ++c1, ++c1, ++c1

c1=1 ← after --c1, --c1

The ++ operator, the constructors, the get_count() function in the Counter

class, and the -- operator in the CountDn class all work with objects of type

CountDn.

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

18

5.6 Specifying the Derived Class

 Following the Counter class in the listing is the specification for a

new class, CountDn. This class incorporates a new function, operator--(),

which decrements the count. However and here’s the key point the new

CountDn class inherits all the features of the Counter class.

CountDn doesn’t need a constructor or the get_count() or operator++()

functions, because these already exist in Counter.

The first line of CountDn specifies that it is derived from Counter: class

CountDn : public counter

Here we use a single colon (not the double colon used for the scope

resolution operator), followed by the keyword public and the name of the

base class Counter. This sets up the relationship between the classes. This

line says that CountDn is derived from the base class Counter.

Substituting Base Class Constructors

 In the main () part of Example we create an object of class CountDn:

CountDn c1;

This causes c1 to be created as an object of class CountDn and

initialized to 0. But wait how this is possible? There is no constructor in the

CountDn class specifier, so what entity carries out the initialization? It turns

out that at least under certain circumstances if you don’t specify a

constructor, the derived class will use an appropriate constructor from the

base class.

 In example there’s no constructor in CountDn, so the compiler uses the no

argument constructor from Count.

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

19

This flexibility on the part of the compiler using one function because

another isn’t available appears regularly in inheritance situations.

Generally, the substitution is what you want, but sometimes it can be

unnerving.

 Substituting Base Class Member Functions

The object c1 of the CountDn class also uses the operator++() and

get_count() functions from the Counter class. The first is used to increment

c1:

++c1;

The second is used to display the count in c1:

cout << “\nc1=” << c1.get_count();

Again the compiler, not finding these functions in the class of which c1 is a

member, uses member functions from the base class.

With inheritance, however, there is a whole raft of additional possibilities.

The question that concerns us at the moment is, can member functions of

the derived class access members of the base class? In other words, can

operator--() in CountDn access count in Counter? The answer is that

member functions can access members of the base class if the members are

public, or if they are protected. They can’t access private members.

We don’t want to make count public, since that would allow it to be

accessed by any function anywhere in the program and eliminate the

advantages of data hiding. A protected member, on the other hand, can be

accessed by member functions in its own class or and here’s the key in any

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

20

class derived from its own class. It can’t be accessed from functions outside

these classes, such as main().

Derived Class Constructors

What happens if we want to initialize a CountDn object to a value?

Can the one-argument constructor in Counter be used? The answer is no. As

we saw in COUNTEN, the compiler will substitute a no-argument

constructor from the base class, but it draws the line at more complex

constructors. To make such a definition work we must write a new set of

constructors for the derived class. This is shown in the COUNTEN2

program.

 Example :-Write an oop program to decrement the counter variable

using constructor in the derived class.

// counten2.cpp

// constructors in derived class

#include <iostream>

using namespace std;

class Counter

{

protected: //NOTE: not private

int count; //count

public:

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

21

Counter() : count() //constructor, no args

{ }

Counter(int c) : count(c) //constructor, one arg

{ }

int get_count() //return count

{ return count; }

Counter operator ++ () //incr count (prefix)

{ return Counter(++count); }

};

class CountDn : public Counter

{

public:

CountDn() : Counter() //constructor, no args

{ }

CountDn(int c) : Counter(c) //constructor, 1 arg

{ }

CountDn operator -- () //decr count (prefix)

{ return CountDn(--count); }

};

int main()

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

22

{

CountDn c1; //class CountDn

CountDn c2(100);

cout << “\nc1=” << c1.get_count(); //display

cout << “\nc2=” << c2.get_count(); //display

++c1; ++c1; ++c1; //increment c1

cout << “\nc1=” << c1.get_count(); //display it

--c2; --c2; //decrement c2

cout << “\nc2=” << c2.get_count(); //display it

CountDn c3 = --c2; //create c3 from c2

cout << “\nc3=” << c3.get_count(); //display c3

cout << endl;

return 0;

}

Example:-Write an oop program to decrement the counter variable

using constructor in the derived class.

// counten2.cpp

// constructors in derived class

#include <iostream>

#include <conio.h>

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

23

using namespace std;

class Counter

{

protected: //NOTE: not private

int count; //count

public:

Counter() : count() //constructor, no args

{ }

Counter(int c) : count(c) //constructor, one arg

{ }

int get_count() //return count

{ return count; }

void inc_count ()

{ ++count; }

};

class CountDn : public Counter

{

public:

CountDn() : Counter() //constructor, no args

{ }

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

24

CountDn(int c) : Counter(c) //constructor, 1 arg

{ }

 void dec_count() //decr count (prefix)

{ --count; }

};

int main()

{

CountDn c1; //class CountDn

CountDn c2(100);

cout << "\nc1=" << c1.get_count(); //display

cout << "\nc2=" << c2.get_count(); //display

c1.inc_count();

 c1.inc_count();

 c1.inc_count();

cout << "\nc1=" << c1.get_count(); //display it

 //decrement c2

 c2.dec_count();

 c2.dec_count();

cout << "\nc2=" << c2.get_count(); //display it

CountDn c3 = c2; //create c3 from c2

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

25

cout << "\nc3=" << c3.get_count(); //display c3

cout << endl;

getch();

return 0;

}

This program uses two new constructors in the CountDn class. Here is the

no-argument constructor:

CountDn() : Counter()

{ }

This constructor has an unfamiliar feature: the function name following the

colon. This construction causes the CountDn() constructor to call the

Counter() constructor in the base class. In main(), when we say

CountDn c1;

The compiler will create an object of type CountDn and then call the

CountDn constructor to initialize it. This constructor will in turn call the

Counter constructor, which carries out the work. The CountDn()

constructor could add additional statements of its own, but in this case it

doesn’t need to, so the function body between the braces is empty. Calling a

constructor from the initialization list may seem odd, but it makes sense.

You want to initialize any variables, whether they’re in the derived class or

the base class, before any statements in either the derived or base-class

constructors are executed. By calling the baseclass constructor before the

derived-class constructor starts to execute, we accomplish this. The

statement

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

26

CountDn c2(100);

In main() uses the one-argument constructor in CountDn. This constructor

also calls the corresponding one-argument constructor in the base class:

CountDn(int c) : Counter(c) argument c is passed to Counter

{ }

This construction causes the argument c to be passed from CountDn() to

Counter(), where it is used to initialize the object. In main(), after

initializing the c1 and c2 objects, we increment one and decrement the other

and then print the results. The one-argument constructor is also used in an

assignment statement.

CountDn c3 = --c2;

5.7 Overriding Member Functions

 You can use member functions in a derived class that override that is,

have the same name as those in the base class. You might want to do this so

that calls in your program work the same way for objects of both base and

derived classes. The program modeled a stack, a simple data storage device.

It allowed you to push integers onto the stack and pop them off. However,

STAKARAY had a potential flaw. If you tried to push too many items onto

the stack, the program might bomb, since data would be placed in memory

beyond the end of the st[] array. Or if you tried to pop too many items, the

results would be meaningless, since you would be reading data from

memory locations outside the array. To cure these defects we’ve created a

new class, Stack2, derived from Stack. Objects of Stack2 behave in exactly

the same way as those of Stack, except that you will be warned if you

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

27

attempt to push too many items on the stack or if you try to pop an item

from an empty stack. Here’s the listing for STAKEN:

Example:- Write an oop program to overload functions in base and

derived stack classes.

// staken.cpp

#include <iostream.h>

#include <process.h> //for exit()

class Stack

{

protected: //NOTE: can’t be private

enum { MAX = 3 }; //size of stack array

int st[MAX]; //stack: array of integers

int top; //index to top of stack

public:

Stack() //constructor

{ top = -1; }

void push(int var) //put number on stack

{ st[++top] = var; }

int pop() //take number off stack

{ return st[top--]; }

};

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

28

class Stack2 : public Stack

{

public:

void push(int var) //put number on stack

{

if(top >= MAX-1) //error if stack full

{ cout << “\nError: stack is full”; exit(1); }

Stack::push(var); //call push() in Stack class

}

int pop() //take number off stack

{

if (top < 0) //error if stack empty

{

cout << “\nError: stack is empty\n”; exit(1); }

return Stack::pop(); //call pop() in Stack class

}

};

int main()

{

Stack2 s1;

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

29

s1.push(11); //push some values onto stack

s1.push(22);

s1.push(33);

cout << endl << s1.pop(); //pop some values from stack

cout << endl << s1.pop();

cout << endl << s1.pop();

cout << endl << s1.pop(); //oops, popped one too many...

cout << endl;

return 0;

}

In this program the Stack class is just the same as it was in the

STAKARAY program, except that the data members have been made

protected.

Which Function Is Used?

 The Stack2 class contains two functions, push() and pop(). These

functions have the same names and the same argument and return types, as

the functions in Stack. When we call these functions from main(), in

statements like

s1.push(11);

How does the compiler know which of the two push() functions to

use? Here’s the rule: When the same function exists in both the base class

and the derived class, the function in the derived class will be executed.

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

30

(This is true of objects of the derived class. Objects of the base class don’t

know anything about the derived class and will always use the base class

functions.)

We say that the derived class function overrides the base class

function. So in the preceding statement, since s1 is an object of class

Stack2, the push() function in Stack2 will be executed, not the one in Stack.

The push() function in Stack2 checks to see whether the stack is full. If it is,

it displays an error message and causes the program to exit. If it isn’t, it

calls the push() function in Stack. Similarly, the pop() function in Stack2

checks to see whether the stack is empty. If it is, it prints an error message

and exits; otherwise, it calls the pop() function in Stack. In main() we push

three items onto the stack, but we pop four. The last pop elicits an error

message

33

22

11

Error: stack is empty

and terminates the program.

5.7.1 Scope Resolution with Overridden Functions

How do push() and pop() in Stack2 access push() and pop() in Stack? They

use the scope resolution operator, ::, in the statements

Stack::push(var);

and

return Stack::pop();

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

31

These statements specify that the push() and pop() functions in Stack are to

be called. Without the scope resolution operator, the compiler would think

the push() and pop() functions in Stack2 were calling themselves, which in

this case would lead to program failure. Using the scope resolution operator

allows you to specify exactly what class the function is a member of.

5.8 Inheritance in the English Distance Class

Here’s a somewhat more complex example of inheritance. So far in

this book the various programs that used the English Distance class

assumed that the distances to be represented would always be positive. This

is usually the case in architectural drawings. However, if we were

measuring, say, the water level of the Pacific Ocean as the tides varied, we

might want to be able to represent negative feet-and-inches quantities. (Tide

levels below mean-lower-low-water are called minus tides; they prompt

clam diggers to take advantage of the larger area of exposed beach.) Let’s

derive a new class from Distance. This class will add a single data item to

our feet-and inches measurements: a sign, which can be positive or

negative. When we add the sign, we’ll also need to modify the member

functions so they can work with signed distances. Here’s the listing for

ENGLEN:

Example:-Write an oop program to overload functions in base and

derived distance classes.

// englen.cpp

// inheritance using English Distances

#include <iostream>

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

32

using namespace std;

enum posneg { pos, neg }; //for sign in DistSign

class Distance //English Distance class

{

protected: //NOTE: can’t be private

int feet;

float inches;

public: //no-arg constructor

Distance() : feet(0), inches(0.0)

{ } //2-arg constructor)

Distance(int ft, float in) : feet(ft), inches(in)

{ }

void getdist() //get length from user

{

cout << “\nEnter feet: “; cin >> feet;

cout << “Enter inches: “; cin >> inches;

}

void showdist() const //display distance

{ cout << feet << “\’-” << inches << ‘\”’; }

};

class DistSign : public Distance //adds sign to Distance

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

33

{

private:

posneg sign; //sign is pos or neg

public:

//no-arg constructor

DistSign() : Distance() //call base constructor

{ sign = pos; } //set the sign to +

 //2- or 3-arg constructor

DistSign(int ft, float in, posneg sg=pos) :

Distance(ft, in) //call base constructor

{ sign = sg; } //set the sign

void getdist() //get length from user

{

Distance::getdist(); //call base getdist()

char ch; //get sign from user

cout << “Enter sign (+ or -): “; cin >> ch;

sign = (ch==’+’) ? pos : neg;

}

void showdist() const //display distance

{

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

34

cout << ((sign==pos) ? “(+)” : “(-)”); //show sign

Distance::showdist(); //ft and in

}

};

int main()

{

DistSign alpha; //no-arg constructor

alpha.getdist(); //get alpha from user

DistSign beta(11, 6.25); //2-arg constructor

DistSign gamma(100, 5.5, neg); //3-arg constructor

//display all distances

cout << “\nalpha = “; alpha.showdist();

cout << “\nbeta = “; beta.showdist();

cout << “\ngamma = “; gamma.showdist();

cout << endl;

return 0;

}

Here the DistSign class adds the functionality to deal with signed

numbers. The Distance class in this program is just the same as in previous

programs, except that the data is protected. Actually in this case it could be

private, because none of the derived-class functions accesses it. However,

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

35

it’s safer to make it protected so that a derived-class function could access it

if necessary.

Operation of ENGLEN

The main() program declares three different signed distances. It gets

a value for alpha from the user and initializes beta to (+)11'–6.25'' and

gamma to (–)100'–5.5''. In the output we use parentheses around the sign to

avoid confusion with the hyphen separating feet and inches. Here’s some

sample output:

Enter feet: 6

Enter inches: 2.5

Enter sign (+ or -): -

alpha = (-)6’-2.5”

beta = (+)11’-6.25”

gamma = (-)100’-5.5”

The DistSign class is derived from Distance. It adds a single variable, sign,

which is of type posneg. The sign variable will hold the sign of the distance.

The posneg type is defined in an enum statement to have two possible

values: pos and neg.

Constructors in DistSign

 DistSign has two constructors, mirroring those in Distance. The first

takes no arguments, the second takes either two or three arguments. The

third, optional, argument in the second constructor is a sign, either pos or

neg. Its default value is pos. These constructors allow us to define variables

(objects) of type DistSign in several ways. Both constructors in DistSign

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

36

call the corresponding constructors in Distance to set the feetand- inches

values. They then set the sign variable. The no-argument constructor always

sets it to pos. The second constructor sets it to pos if no third-argument

value has been provided, or to a value (pos or neg) if the argument is

specified. The arguments ft and in, passed from main() to the second

constructor in DistSign, are simply forwarded to the constructor in

Distance.

Member Functions in DistSign

 Adding a sign to Distance has consequences for both of its member

functions. The getdist() function in the DistSign class must ask the user for

the sign as well as for feet-and-inches values, and the showdist() function

must display the sign along with the feet and inches. These functions call

the corresponding functions in Distance, in the lines

Distance::getdist();

and

Distance::showdist();

These calls get and display the feet and inches values. The body of getdist()

and showdist() in DistSign then go on to deal with the sign. Lecture

Example:-

1. Imagine a publishing company that markets both book and audiocassette

versions of its works. Create a class publication that stores the title (a int)

and price (type float) of a publication. From this class derive two classes:

book, which adds a page count (type int), and tape, which adds a playing

time in minutes (type float). Each of these three classes should have a

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

37

getdata() function to get its data from the user at the keyboard, and a

putdata() function to display its data. Write a main() program to test the

book and tape classes by creating instances of them, asking the user to fill

in data with getdata(), and then displaying the data with putdata().

2. Start with the publication, book, and tape classes of Example 1. Add a

base class sale that holds an array of three floats so that it can record the

dollar sales of a particular publication for the last three months. Include a

getdata() function to get three sales amounts from the user, and a putdata()

function to display the sales figures. Alter the book and tape classes so they

are derived from both publication and sales. An object of class book or tape

should input and output sales data along with its other data. Write a main()

function to create a book object and a tape object and exercise their

input/output capabilities.

Solutions to Example

1.

// ex1.cpp

// publication class and derived classes

#include <iostream >

#include <string.h>

 using namespace std;

class publication // base class

{

private:

int title;

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

38

float price;

public:

void getdata()

{

cout << “\nEnter title: “; cin >> title;

cout << “Enter price: “; cin >> price;

}

void putdata() const

{

cout << “\nTitle: “ << title;

cout << “\nPrice: “ << price;

}

};

class book : private publication // derived class

{

private:

int pages;

public:

void getdata()

{

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

39

publication::getdata();

cout << “Enter number of pages: “; cin >> pages;

}

void putdata() const

{

publication::putdata();

cout << “\nPages: “ << pages;

}

};

class tape : private publication // derived class

{

private:

float time;

public:

void getdata()

{

publication::getdata();

cout << “Enter playing time: “; cin >> time;

}

void putdata() const

{

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

40

publication::putdata();

cout << “\nPlaying time: “ << time;

}

};

int main()

{

book book1; // define publications

tape tape1;

book1.getdata(); // get data for them

tape1.getdata();

book1.putdata(); // display their data

tape1.putdata();

cout << endl;

return 0;

}

2.

// ex2.cpp

// multiple inheritance with publication class

#include <iostream>

#include <string.h>

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

41

using namespace std;

class publication

{ private:

int title;

float price;

public:

void getdata()

{

cout << “\nEnter title: “; cin >> title; cout << “ Enter price: “; cin >> price;

}

void putdata() const

{

cout << “\nTitle: “ << title; cout << “\n Price: “ << price; }

};

class sales

{ private:

enum { MONTHS = 3 };

float salesArr[MONTHS];

public:

void getdata();

void putdata() const;

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

42

};

void sales::getdata()

{

cout << “ Enter sales for 3 months\n”; for(int j=0; j<MONTHS; j++) {

cout << “ Month “ << j+1 << “: “; cin >> salesArr[j]; } }

void sales::putdata() const

{

for(int j=0; j<MONTHS; j++)

{ cout << “\n Sales for month “ << j+1 << “: “; cout << salesArr[j]; } }

class book : private publication, private sales

{

private:

int pages;

public:

void getdata()

{ publication::getdata();

cout << “ Enter number of pages: “; cin >> pages;

}

void putdata() const

{

publication::putdata();

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

43

cout << “\n Pages: “ << pages;

sales::putdata();

}

};

class tape : private publication, private sales

{

private:

float time;

public:

void getdata()

{

publication::getdata();

cout << “ Enter playing time: “; cin >> time;

sales::getdata();

}

void putdata() const

{

publication::putdata();

cout << “\n Playing time: “ << time;

sales::putdata();

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

44

} };

int main()

{

book book1; // define publications

tape tape1;

book1.getdata(); // get data for publications

tape1.getdata();

book1.putdata(); // display data for publications

tape1.putdata();

cout << endl;

return 0;

5. 9 Multiple Inheritance

A class can inherit the attributes of two or more classes as shown in

figure 5.7. This is known as multiple inheritance. Multiple inheritance

allows us to combine the features of several exiting classes as a starting

point for defining new classes. It is like a child inheriting the physical

features of one parent and the intelligence of another.

 ……..

 Figure 5.7 Multiple inheritance

B-1 B-2 B-n

D

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

45

The syntax of a derived class with multiple base classes is as follows:

Where, visibility may be either public or private. The base classes are

separated by commas.

Example:-

class P: public M, public N

{

public:

void display(void);

};

classes M and N have been specified as follows:

class M

{

protected:

int m;

Class D: visibility B-1, visibility B-2 …..

{

……

….. (Body of D)

………..

};

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

46

public:

void get_m(int);

};

void M:: get_m(int x)

{

m=x;

}

class N

{

protected:

int n;

public:

void get_n(int);

};

void N:: get_n(int x)

{

n=y;

}

The derived class P, as declared above, would, in effect, contain all the

members of M and N in addition to its own members as shown below:

class p

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

47

{

protected:

 // from M

 // from N

Public:

 // from M

 // from N

 // Own member

};

The member function display() can be defined as follows:

Void p::display(void)

{

cout<<"m="<<m<<"\n";

cout<<"n="<<n<<"\n";

cout<<"m*n="<<m*n<<"\n";

};

The main() function which provides the user-interface may be written as

follows:

main()

{

Pp;

Int m;

Int n;

Void get_m(int);

Void get_n(int);

Void display(void);

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

48

P.get_m(10);

P.get_n(20);

P.display();

}

Program shows the entire code illustrating how all the three classes are

implemented in multiple inheritance mode.

// multiple inheritance //

#include<iostream>

using namespace std;

class M

{

protected:

int m;

public:

void get_m(int);

};

class N

{

protected:

int n;

public:

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

49

void get_n(int);

};

class P: public M, public N

{

public:

void display(void);

};

void M:: get_m(int x)

{

m=x;

}

void N:: get_n(int y)

{

n=y;

}

void P:: display(void)

{

cout<<"m="<<m<<"\n";

cout<<"n="<<n<<"\n";

cout<<"m*n="<<m*n<<"\n";

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

50

}

int main()

{

Pp;

P.get_m(10);

P.get_n(20);

P.display();

return 0;

}

The output of program would be:

m=10

n=20

m*n=200

Ambiguity Resolution in Inheritance

Occasionally, we may face a problem in using the multiple inheritance,

when a function with the same name appears in more than one base class.

Consider the following two classes.

class M

{

public:

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

51

void display(void)

{

cout<<"class M\n";

}

};

class N

{

public:

void display(void)

{

cout<<"class N\n";

}

};

Which display() function is used by the derived class when we inherit these

two classes? We can solve this problem y defining a named instance within

the derived class, using the class resolution operator with the function as

show below:

class P: public M, public N

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

52

5.10 Multi-level inheritance

It is not uncommon that a class is derived from another derived class

as shown in fig. 8.6.The class A serves as a base class for the derived class

B which in turn serves as a base class for the derived class C. The class b is

known as intermediate base class since it provides a link for the inheritance

between A and C. The chain ABC is known as inheritance path.

class student

{

 protected:

 int roll-number;

 public:

 void get_ number (int);

 void put_ number (void);

};

 void student :: get_ number (int a)

{

 roll_ number = a;

}

 void student :: put_ number ()

{

 cout <<”Roll Number:” <<roll_ number <<”\n”;

}

class test: public student // first level derivation

protected:

float su1;

float sub2;

public:

void get_marks(float, float);

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

53

void put_marks(void);

};

void test:: get_marks(float x, float y)

{

sub1=x;

sub2=y;

}

void test::put_marks()

{

cout<<"marks in sub1="<<sub1<<"\n";

cout<<"marks in sub2="<<sub2<<"\n";

}

class result:public test // second level derivation

{

float total; // private by default

public:

void display(void);

};

private:

float total; // own member

protected:

int roll_number; // inherited from student via test

float sub1; // inherited from test

float sub2; // inherited from test

public:

void get_number(int); // from student via test

void put_number(void); // from student via test

void get_marks(float, float); // from test

void put_marks(void); // from test

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

54

void display(void); // own member

The inherited functions put_number() and put_marks() can be used in the

definition of display() function:

void result:: display(void)

{

total = sub1+sub2;

put_number();

put_marks();

cout<<"total="<<total<<"\n";

}

Here is a simple main() program:

int main()

{

result student1; // student created

student1.get_number(111);

student1.get_marks(75,0,59,5);

student1.display();

return 0;

}

This will display the result of student1. The complete program is shown in

program:

//multilevel inheritance //

#include<iostream>

using namespace std;

class student

{

protected:

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

55

int roll-number;

 public:

 void get_ number (int);

 void put_ number (void);

};

 void student :: get_ number (int a)

{

 roll_ number = a;

}

 void student :: put_ number ()

{

 cout <<”Roll Number:” <<roll_ number <<”\n”;

}

class test: public student // first level derivation

{

protected:

float sub1;

float sub2;

public:

void get_marks(float, float);

void put_marks(void);

};

void test:: get_marks(float x, float y)

{

sub1=x;

sub2=y;

}

void test::put_marks()

{

Object Oriented Programming (OOP) Lecture Zahraa Salah Dhaief
Computer Science Department- Education College 2nd stage - Morning study

56

cout<<"marks in sub1="<<sub1<<"\n";

cout<<"marks in sub2="<<sub2<<"\n";

}

class result:public test // second level derivation

{

float total; // private by default

public:

void display(void);

};

void result:: display(void)

{

total = sub1+sub2;

put_number();

put_marks();

cout<<"total="<<total<<"\n";

}

int main()

{

result student1; // student created

student1.get_number(111);

student1.get_marks(75,0,59,5);

student1.display();

return 0;

}

Program display the following output:

Roll number 11

Marks in sub1=75

Marks in sub1=59.5

Total=134.5

