
2nd stage 2019-2020 Data Structure

Lecturer :Amaal K.Dawood Circular Queue

1

Circular queue

Introduction:

Circular queue is a linear data structure. It follows FIFO principle. In circular queue the last

node is connected back to the first node to make a circle. Elements are added at the rear end

and the elements are deleted at front end of the queue.

Double Ended Queue is also a Queue data structure in which the insertion and deletion

operations are performed at both the ends (front and rear). That means, we can insert at

both front and rear positions and can delete from both front and rear positions.

Definition

In a normal Queue Data Structure, we can insert elements until queue becomes full. But

once if queue becomes full, we cannot insert the next element until all the elements are

deleted from the queue.

For example consider the queue below...

After inserting all the elements into the queue.

Now consider the following situation after deleting three elements from the queue...

This situation also says that Queue is Full and we cannot insert the new element because,

'rear' is still at last position. In above situation, even though we have empty positions in the

queue we cannot make use of them to insert new element. This is the major problem in

normal queue data structure. To overcome this problem we use circular queue data

structure.

2nd stage 2019-2020 Data Structure

Lecturer :Amaal K.Dawood Circular Queue

2

What is Circular Queue?

A Circular Queue can be defined as follows...

Circular Queue is also a linear data structure, which follows the principle of FIFO(First In
First Out), but instead of ending the queue at the last position, it again starts from the first
position after the last, hence making the queue behave like a circular data structure.

Graphical representation of a circular queue is as follows...

2nd stage 2019-2020 Data Structure

Lecturer :Amaal K.Dawood Circular Queue

3

Application of Circular Queue

Below we have some common real-world examples where circular queues are used:

1. Computer controlled Traffic Signal System uses circular queue.

2. CPU scheduling and Memory management.

Comparison between Queue and Circular Queue:

2nd stage 2019-2020 Data Structure

Lecturer :Amaal K.Dawood Circular Queue

4

Implementation of Circular Queue

To implement a circular queue data structure using array, we first perform the following

steps before we implement actual operations.

• Step 1: Include all the header files which are used in the program and define a

constant 'SIZE' with specific value.

• Step 2: Declare all user defined functions used in circular queue implementation.

• Step 3: Create a one dimensional array with above defined SIZE (int cQueue[SIZE])

• Step 4: Define two integer variables 'front' and 'rear' and initialize both with '-1'. (int

front = -1, rear = -1)

• Step 5: Implement main method by displaying menu of operations list and make

suitable function calls to perform operation selected by the user on circular queue.

EnQueue(value) - Inserting value into the Circular Queue

In a circular queue, enQueue() is a function which is used to insert an element into the

circular queue. In a circular queue, the new element is always inserted at rear position. The

enQueue() function takes one integer value as parameter and inserts that value into the

circular queue. We can use the following steps to insert an element into the circular

queue...

• Step 1: Check whether queue is FULL. ((rear == SIZE-1 && front == 0) || (front ==

rear+1))

• Step 2: If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!" and

terminate the function.

• Step 3: If it is NOT FULL, then check rear == SIZE - 1 && front != 0 if it is TRUE, then

set rear = -1.

• Step 4: Increment rear value by one (rear++), set queue[rear] = value and check

'front == -1' if it is TRUE, then set front = 0.

2nd stage 2019-2020 Data Structure

Lecturer :Amaal K.Dawood Circular Queue

5

DeQueue() - Deleting a value from the Circular Queue

In a circular queue, deQueue() is a function used to delete an element from the circular

queue. In a circular queue, the element is always deleted from front position. The

deQueue() function doesn't take any value as parameter. We can use the following steps to

delete an element from the circular queue...

• Step 1: Check whether queue is EMPTY. (front == -1 && rear == -1)

• Step 2: If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible!!!"

and terminate the function.

• Step 3: If it is NOT EMPTY, then display queue[front] as deleted element and

increment the front value by one (front ++). Then check whether front == SIZE, if it is

TRUE, then set front = 0. Then check whether both front - 1 and rear are equal (front

-1 == rear), if it TRUE, then set both front and rear to '-1' (front = rear = -1).

Display() - Displays the elements of a Circular Queue

We can use the following steps to display the elements of a circular queue...

• Step 1: Check whether queue is EMPTY. (front == -1)

• Step 2: If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the function.

• Step 3: If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front'.

• Step 4: Check whether 'front <= rear', if it is TRUE, then display 'queue[i]' value and

increment 'i' value by one (i++). Repeat the same until 'i <= rear' becomes FALSE.

• Step 5: If 'front <= rear' is FALSE, then display 'queue[i]' value and increment 'i' value

by one (i++). Repeat the same until'i <= SIZE - 1' becomes FALSE.

• Step 6: Set i to 0.

• Step 7: Again display 'cQueue[i]' value and increment i value by one (i++). Repeat the

same until 'i <= rear' becomes FALSE.

2nd stage 2019-2020 Data Structure

Lecturer :Amaal K.Dawood Circular Queue

6

Home works

1. Write a C++ program to implement queue using array?

2. Write a C++ program to implement circular queue using arrays?

