
61

terminates. Both these protocols have two main disadvantages. First, resource

utilization may be low, since resources may be allocated but unused for a long period.

In the example given, for instance, we can release the DVD drive and disk file, and

then request the disk file and printer, only if we can be sure that our data will remain

on the disk file. Otherwise, we must request all resources at the beginning for both

protocols.

Second, starvation is possible. A process that needs several popular resources

may have to wait indefinitely, because at least one of the resources that it needs is

always allocated to some other process.

6.4.3. No Preemption

The third necessary condition for deadlocks is that there be no preemption of

resources that have already been allocated. To ensure that this condition does not

hold, we can use the following protocol. If a process is holding some resources and

requests another resource that cannot be immediately allocated to it (that is, the

process must wait), then all resources the process is currently holding are preempted.

In other words, these resources are implicitly released. The preempted resources are

added to the list of resources for which the process is waiting. The process will be

restarted only when it can regain its old resources, as well as the new ones that it is

requesting.

Alternatively, if a process requests some resources, we first check whether

they are available. If they are, we allocate them. If they are not, we check whether

they are allocated to some other process that is waiting for additional resources. If

so,we preempt the desired resources from the waiting process and allocate them to the

requesting process. If the resources are neither available nor held by a waiting

process, the requesting process must wait. While it is waiting, some of its resources

may be preempted, but only if another process requests them. A process can be

restarted only when it is allocated the new resources it is requesting and recovers any

resources that were preempted while it was waiting.

This protocol is often applied to resources whose state can be easily saved and

restored later, such as CPU registers and memory space. It cannot generally be

applied to such resources as mutex locks and semaphores.

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

62

6.4.4. Circular Wait

The fourth and final condition for deadlocks is the circular-wait condition.

One way to ensure that this condition never holds is to impose a total ordering of all

resource types and to require that each process requests resources in an increasing

order of enumeration. To illustrate, we let R = {R1, R2, ..., Rm} be the set of resource

types. We assign to each resource type a unique integer number, which allows us to

compare two resources and to determine whether one precedes another in our

ordering. Formally, we define a one-to-one function F: R→N, where N is the set of

natural numbers. For example, if the set of resource types R includes tape drives, disk

drives, and printers, then the function F might be defined as follows:

F(tape drive) = 1

F(disk drive) = 5

F(printer) = 12

We can now consider the following protocol to prevent deadlocks: Each

process can request resources only in an increasing order of enumeration. That is, a

process can initially request any number of instances of a resource type say, Ri. After

that, the process can request instances of resource type Rj if and only if F(Rj) > F(Ri).

For example, using the function defined previously, a process that wants to use the

tape drive and printer at the same time must first request the tape drive and then

request the printer. Alternatively, we can require that a process requesting an instance

of resource type Rj must have released any resources Ri such that F(Ri) ≥ F(Rj).

Note also that if several instances of the same resource type are needed, a single

request for all of them must be issued.

If these two protocols are used, then the circular-wait condition cannot hold.

We can demonstrate this fact by assuming that a circular wait exists (proof by

contradiction). Let the set of processes involved in the circular wait be {P0, P1, ...,

Pn}, where Pi is waiting for a resource Ri, which is held by process Pi+1. (Modulo

arithmetic is used on the indexes, so that Pn is waiting for a resource Rn held by P0.)

Then, since process Pi+1 is holding resource Ri while requesting resource Ri+1, we

must have F(Ri) < F(Ri+1) for all i. But this condition means that F(R0) < F(R1) < ...

< F(Rn) < F(R0). By transitivity, F(R0) < F(R0), which is impossible. Therefore,

there can be no circular wait. We can accomplish this scheme in an application

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

63

program by developing an ordering among all synchronization objects in the system.

All requests for synchronization objects must be made in increasing order.

Keep in mind that developing an ordering, or hierarchy, does not in itself

prevent deadlock. It is up to application developers to write programs that follow the

ordering. Also note that the function F should be defined according to the normal

order of usage of the resources in a system. For example, because the tape drive is

usually needed before the printer, it would be reasonable to define F(tape

drive)<F(printer).

Although ensuring that resources are acquired in the proper order is the

responsibility of application developers, certain software can be used to verify that

locks are acquired in the proper order and to give appropriate warnings when locks

are acquired out of order and deadlock is possible. It is also important to note that

imposing a lock ordering does not guarantee deadlock prevention if locks can be

acquired dynamically. For example, assume we have a function that transfers funds

between two accounts.

6.5. Deadlock Avoidance

Deadlock-prevention algorithms, as discussed in the previous section, prevent

deadlocks by limiting how requests can be made. The limits ensure that at least one of

the necessary conditions for deadlock cannot occur. Possible side effects of

preventing deadlocks by this method, however, are low device utilization and reduced

system throughput.

An alternative method for avoiding deadlocks is to require additional

information about how resources are to be requested. For example, in a system with

one tape drive and one printer, the system might need to know that process P will

request first the tape drive and then the printer before releasing both resources,

whereas process Q will request first the printer and then the tape drive. With this

knowledge of the complete sequence of requests and releases for each process, the

system can decide for each request whether or not the process should wait in order to

avoid a possible future deadlock. Each request requires that in making this

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

64

the system consider the resources currently available, the resources currently allocated

to each process, and the future requests and releases of each process.

The various algorithms that use this approach differ in the amount and type of

information required. The simplest and most useful model requires that each process

declare the maximum number of resources of each type that it may need. Given this a

priori information, it is possible to construct an algorithm that ensures that the system

will never enter a deadlocked state. A deadlock-avoidance algorithm dynamically

examines the resource-allocation state to ensure that a circular-wait condition can

never exist. The resource allocation state is defined by the number of available and

allocated resources and the maximum demands of the processes. In the following

sections, we explore two deadlock-avoidance algorithms.

6.5.1. Safe State

A state is safe if the system can allocate resources to each process (up to its

maximum) in some order and still avoid a deadlock. More formally, a system is in a

safe state only if there exists a safe sequence. A sequence of processes <P1, P2, ...,

Pn> is a safe sequence for the current allocation state if, for each Pi, the resource

requests that Pi can still make can be satisfied by the currently available resources

plus the resources held by all Pj, with j <i. In this situation, if the resources that Pi

needs are not immediately available, then Pi can wait until all Pj have finished. When

they have finished, Pi can obtain all of its needed resources, complete its designated

task, return its allocated resources, and terminate. When Pi terminates, Pi+1 can

obtain its needed resources, and so on. If no such sequence exists, then the system

state is said to be unsafe.

A safe state is not a deadlocked state. Conversely, a deadlocked state is an

unsafe state. Not all unsafe states are deadlocks, however (Figure 6.4). An unsafe

state may lead to a deadlock. As long as the state is safe, the operating system can

avoid unsafe (and deadlocked) states. In an unsafe state, the operating system cannot

prevent processes from requesting resources in such a way that a deadlock occurs.

The behaviour of the processes controls unsafe states.

To illustrate, we consider a system with twelve magnetic tape drives and three

processes: P0, P1, and P2. Process P0 requires ten tape drives, process P1 may need

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

