
73

cycle in the graph. An algorithm to detect a cycle in a graph requires an order of n2

operations, where n is the number of vertices in the graph.

Figure ‎6-7 (a) Resource-allocation graph. (b) Corresponding wait-for graph

6.6.2. Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-allocation system with

multiple instances of each resource type. We turn now to a deadlock detection

algorithm that is applicable to such a system. The algorithm employs several time-

varying data structures that are similar to those used in the banker’s algorithm:

• Available. A vector of length m indicates the number of available resources

of each type.

• Allocation. An n × m matrix defines the number of resources of each type currently

allocated to each process.

• Request. An n × m matrix indicates the current request of each process.

If Request[i][j] equals k, then process Pi is requesting k more instances of

resource type Rj .

The≤relation between two vectors is defined as in Banker’s algorithm. To simplify

notation, we again treat the rows in the matrices Allocation and Request as

vectors; we refer to them as Allocationi and Requesti . The detection algorithm

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

74

described here simply investigates every possible allocation sequence for the

processes that remain to be completed. Compare this algorithm with the

banker’s algorithm.

1. Let Work and Finish be vectors of length m and n, respectively. Initialize

Work = Available. For i = 0, 1, ..., n–1, if Allocationi = 0, then Finish[i] =

false. Otherwise, Finish[i] = true.

2. Find an index i such that both

a. Finish[i] == false

b. Requesti ≤ Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

Go to step 2.

4. If Finish[i] ==false for some i, 0≤i<n, then the system is in a deadlocked

state. Moreover, if Finish[i] == false, then process Pi is deadlocked.

This algorithm requires an order of m × n2 operations to detect whether the system is

in a deadlocked state. You may wonder why we reclaim the resources of process Pi

(in step 3) as soon as we determine that Requesti ≤ Work (in step 2b). We know that

Pi is currently not involved in a deadlock (since Requesti ≤ Work). Thus, we take an

optimistic attitude and assume that Pi will require no more resources to complete its

task; it will thus soon return all currently allocated resources to the system. If our

assumption is incorrect, a deadlock may occur later. That deadlock will be detected

the next time the deadlock-detection algorithm is invoked. To illustrate this algorithm,

we consider a system with five processes P0 through P4 and three resource types A,

B, and C. Resource type A has seven instances, resource type B has two instances, and

resource type C has six instances. Suppose that, at time T0, we have the following

resource-allocation state:

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

75

We claim that the system is not in a deadlocked state. Indeed, if we execute

our algorithm, we will find that the sequence <P0, P2, P3, P1, P4> results in

Finish[i] == true for all i.

Suppose now that process P2 makes one additional request for an instance of type C.

The Request matrix is modified as follows:

Request

A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0

P4 0 0 2

We claim that the system is now deadlocked. Although we can reclaim the

resources held by process P0, the number of available resources is not sufficient to

fulfil the requests of the other processes. Thus, a deadlock exists, consisting of

processes P1, P2, P3, and P4.

6.7. Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, several alternatives are

available. One possibility is to inform the operator that a deadlock has occurred and to

let the operator deal with the deadlock manually. Another possibility is to let the

system recover from the deadlock automatically. There are two options for breaking a

deadlock. One is simply to abort one or more processes to break the circular wait. The

other is to preempt some resources from one or more of the deadlocked processes.

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

76

6.7.1. Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods. In both

methods, the system reclaims all resources allocated to the terminated processes.

• Abort all deadlocked processes. This method clearly will break the deadlock cycle,

but at great expense. The deadlocked processes may have computed for a long time,

and the results of these partial computations must be discarded and probably will have

to be recomputed later.

• Abort one process at a time until the deadlock cycle is eliminated. This method

incurs considerable overhead, since after each process is aborted, a deadlock-detection

algorithm must be invoked to determine whether any processes are still deadlocked.

Aborting a process may not be easy. If the process was in the midst of updating a file,

terminating it will leave that file in an incorrect state. Similarly, if the process was in

the midst of printing data on a printer, the system must reset the printer to a correct

state before printing the next job.

If the partial termination method is used, then we must determine which

deadlocked process (or processes) should be terminated. This determination is a

policy decision, similar to CPU-scheduling decisions. The question is basically an

economic one; we should abort those processes whose termination will incur the

minimum cost. Unfortunately, the term minimum cost is not a precise one. Many

factors may affect which process is chosen, including:

1. What the priority of the process is

2. How long the process has computed and how much longer the process will

compute before completing its designated task

3. How many and what types of resources the process has used (for example, whether

the resources are simple to preempt)

4. How many more resources the process needs in order to complete

5. How many processes will need to be terminated

6. Whether the process is interactive or batch

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

