
77

7. Chapter Seven

7.1. Memory Management

The main purpose of a computer system is to execute programs. These programs,

together with the data they access, must be at least partially in main memory during

execution.

To improve both the utilization of the CPU and the speed of its response to users, a

general-purpose computer must keep several processes in memory. Many memory-

management schemes exist, reflecting various approaches, and the effectiveness of

each algorithm depends on the situation. Selection of a memory-management scheme

for a system depends on many factors, especially on the hardware design of the

system. Most algorithms require hardware support.

Memory is central to the operation of a modern computer system. Memory consists

of a large array of bytes, each with its own address. The CPU fetches instructions

from memory according to the value of the program counter. These instructions may

cause additional loading from and storing to specific memory addresses. A typical

instruction-execution cycle, for example, first fetches an instruction from memory.

The instruction is then decoded and may cause operands to be fetched from memory.

After the instruction has been executed on the operands, results may be stored back in

memory. The memory unit sees only a stream of memory addresses; it does not know

how they are generated (by the instruction counter, indexing, indirection, literal

addresses, and so on) or what they are for (instructions or data). Accordingly, we can

ignore how a program generates a memory address. We are interested only in the

sequence of memory addresses generated by the running program.

We begin our discussion by covering several issues that are pertinent to managing

memory: basic hardware, the binding of symbolic memory addresses to actual

physical addresses, and the distinction between logical and physical addresses. We

conclude the section with a discussion of dynamic linking and shared libraries.

7.1.1. Basic Hardware

Main memory and the registers built into the processor itself are the only

general-purpose storage that the CPU can access directly. There are machine

instructions that take memory addresses as arguments, but none that take disk

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

78

addresses. Therefore, any instructions in execution, and any data being used by the

instructions, must be in one of these direct-access storage devices. If the data are not

in memory, they must be moved there before the CPU can operate on them.

Registers that are built into the CPU are generally accessible within one cycle of

the CPU clock. Most CPUs can decode instructions and perform simple operations on

register contents at the rate of one or more operations per clock tick. The same cannot

be said of main memory, which is accessed via a transaction on the memory bus.

Completing a memory access may take many cycles of the CPU clock. In such cases,

the processor normally needs to stall, since it does not have the data required to

complete the instruction that it is executing. This situation is intolerable because of

the frequency of memory accesses. The remedy is to add fast memory between the

CPU and main memory, typically on the CPU chip for fast access. To manage a cache

built into the CPU, the hardware automatically speeds up memory access without any

operating-system control.

Not only are we concerned with the relative speed of accessing physical

memory, but we also must ensure correct operation. For proper system operation we

must protect the operating system from access by user processes. On multiuser

systems, we must additionally protect user processes from one another. This

protection must be provided by the hardware because the operating system doesn’t

usually intervene between the CPU and its memory accesses (because of the resulting

performance penalty). Hardware implements this production in several different ways,

as we show throughout the chapter. Here, we outline one possible implementation.

We first need to make sure that each process has a separate memory space.

Separate per-process memory space protects the processes from each other and is

fundamental to having multiple processes loaded in memory for concurrent execution.

To separate memory spaces, we need the ability to determine the range of legal

addresses that the process may access and to ensure that the process can access only

these legal addresses. We can provide this protection by using two registers, usually a

base and a limit, as illustrated in Figure 7.1. The base register holds the smallest legal

physical memory address; the limit register specifies the size of the range. For

example, if the base register holds 300040 and the limit register is 120900, then the

program can legally access all addresses from 300040 through 420939 (inclusive).

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

79

Figure ‎7-1 A base and a limit register define a logical address space

Protection of memory space is accomplished by having the CPU hardware

compare every address generated in user mode with the registers. Any attempt by a

program executing in user mode to access operating-system memory or other users’

memory results in a trap to the operating system, which treats the attempt as a fatal

error (Figure 7.2). This scheme prevents a user program from (accidentally or

deliberately) modifying the code or data structures of either the operating system or

other users.

The base and limit registers can be loaded only by the operating system, which

uses a special privileged instruction. Since privileged instructions can be executed

only in kernel mode, and since only the operating system executes in kernel mode,

only the operating system can load the base and limit registers.

This scheme allows the operating system to change the value of the registers

but prevents user programs from changing the registers’ contents. The operating

system, executing in kernel mode, is given unrestricted access to both operating-

system memory and users’ memory. This provision allows the operating system to

load users’ programs into users’ memory, to dump out those programs in case of

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

80

errors, to access and modify parameters of system calls, to perform I/O to and from

user memory, and to provide many other services. Consider, for example, that an

operating system for a multiprocessing system must execute context switches, storing

the state of one process from the registers into main memory before loading the next

process’s context from main memory into the registers.

Figure ‎7-2 Hardware address protection with base and limit registers

7.1.2. Address Binding

Usually, a program resides on a disk as a binary executable file. To be executed,

the program must be brought into memory and placed within a process. Depending on

the memory management in use, the process may be moved between disk and

memory during its execution. The processes on the disk that are waiting to be brought

into memory for execution form the input queue. The normal single-tasking

procedure is to select one of the processes in the input queue and to load that process

into memory. As the process is executed, it accesses instructions and data from

memory. Eventually, the process terminates, and its memory space is declared

available.

Most systems allow a user process to reside in any part of the physical memory.

Thus, although the address space of the computer may start at 00000, the first address

of the user process need not be 00000. You will see later how a user program actually

places a process in physical memory.

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

