
85

Figure ‎7-5 Swapping of two processes using a disk as a backing store

7.3. Contiguous Memory Allocation

The main memory must accommodate both the operating system and the various

user processes. We therefore need to allocate main memory in the most efficient way

possible. This section explains one early method, contiguous memory allocation.

The memory is usually divided into two partitions: one for the resident operating

system and one for the user processes. We can place the operating system in either

low memory or high memory. The major factor affecting this decision is the location

of the interrupt vector. Since the interrupt vector is often in low memory,

programmers usually place the operating system in low memory as well. Thus, in this

text, we discuss only the situation in which the operating system resides in low

memory. The development of the other situation is similar.

We usually want several user processes to reside in memory at the same time. We

therefore need to consider how to allocate available memory to the processes that are

in the input queue waiting to be brought into memory. In contiguous memory

allocation, each process is contained in a single section of memory that is contiguous

to the section containing the next process.

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

86

7.3.1. Memory Protection

Before discussing memory allocation further, we must discuss the issue of

memory protection. We can prevent a process from accessing memory it does not own

by combining two ideas previously discussed. If we have a system with a relocation

register, together with a limit register, we accomplish our goal. The relocation register

contains the value of the smallest physical address; the limit register contains the

range of logical addresses (for example, relocation = 100040 and limit = 74600). Each

logical address must fall within the range specified by the limit register. The MMU

maps the logical address dynamically by adding the value in the relocation register.

This mapped address is sent to memory (Figure 7.6).

When the CPU scheduler selects a process for execution, the dispatcher loads

the relocation and limit registers with the correct values as part of the context switch.

Because every address generated by a CPU is checked against these registers, we can

protect both the operating system and the other users’ programs and data from being

modified by this running process.

The relocation-register scheme provides an effective way to allow the operating

system’s size to change dynamically. This flexibility is desirable in many situations.

For example, the operating system contains code and buffer space for device drivers.

If a device driver (or other operating-system service) is not commonly used, we do

not want to keep the code and data in memory, as we might be able to use that space

for other purposes. Such code is sometimes called transient operating-system code; it

comes and goes as needed. Thus, using this code changes the size of the operating

system during program execution.

Figure ‎7-6 Hardware support for relocation and limit registers

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

87

7.3.2. Memory Allocation

Now we are ready to turn to memory allocation. One of the simplest methods for

allocating memory is to divide memory into several fixed-sized partitions. Each

partition may contain exactly one process. Thus, the degree of multiprogramming is

bound by the number of partitions. In this multiple partition method, when a

partition is free, a process is selected from the input queue and is loaded into the free

partition. When the process terminates, the partition becomes available for another

process. This method was originally used by the IBM OS/360 operating system

(called MFT)but is no longer in use. The method described next is a generalization of

the fixed-partition scheme (called MVT); it is used primarily in batch environments.

Many of the ideas presented here are also applicable to a time-sharing environment in

which pure segmentation is used for memory management (Section 8.4).

In the variable-partition scheme, the operating system keeps a table indicating

which parts of memory are available and which are occupied. Initially, all memory is

available for user processes and is considered one large block of available memory, a

hole. Eventually, as you will see, memory contains a set of holes of various sizes.

As processes enter the system, they are put into an input queue. The operating

system takes into account the memory requirements of each process and the amount

of available memory space in determining which processes are allocated memory.

When a process is allocated space, it is loaded into memory, and it can then compete

for CPU time. When a process terminates, it releases its memory, which the operating

system may then fill with another process from the input queue.

At any given time, then, we have a list of available block sizes and an input

queue. The operating system can order the input queue according to a scheduling

algorithm. Memory is allocated to processes until, finally, the memory requirements

of the next process cannot be satisfied that is, no available block of memory (or hole)

is large enough to hold that process. The operating system can then wait until a large

enough block is available, or it can skip down the input queue to see whether the

smaller memory requirements of some other process can be met.

In general, as mentioned, the memory blocks available comprise a set of holes of

various sizes scattered throughout memory. When a process arrives and needs

memory, the system searches the set for a hole that is large enough for this process. If

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

88

the hole is too large, it is split into two parts. One part is allocated to the arriving

process; the other is returned to the set of holes. When a process terminates, it releases

its block of memory, which is then placed back in the set of holes. If the new hole is

adjacent to other holes, these adjacent holes are merged to form one larger hole. At

this point, the system may need to check whether there are processes waiting for

memory and whether this newly freed and recombined memory could satisfy the

demands of any of these waiting processes.

This procedure is a particular instance of the general dynamic storage

allocation problem, which concerns how to satisfy a request of size n from a list of

free holes. There are many solutions to this problem. The first-fit, best-fit, and

worst-fit strategies are the ones most commonly used to select a free hole from the set

of available holes.

• First fit. Allocate the first hole that is big enough. Searching can start either at the

beginning of the set of holes or at the location where the previous first-fit search

ended. We can stop searching as soon as we find a free hole that is large enough.

• Best fit. Allocate the smallest hole that is big enough. We must search the entire list,

unless the list is ordered by size. This strategy produces the smallest leftover hole.

• Worst fit. Allocate the largest hole. Again, we must search the entire list, unless it is

sorted by size. This strategy produces the largest leftover hole, which may be more

useful than the smaller leftover hole from a best-fit approach.

Simulations have shown that both first fit and best fit are better than worst fit

in terms of decreasing time and storage utilization. Neither first fit nor best fit is

clearly better than the other in terms of storage utilization, but first fit is generally

faster.

7.3.3. Fragmentation

Both the first-fit and best-fit strategies for memory allocation suffer from

external fragmentation. As processes are loaded and removed from memory, the

free memory space is broken into little pieces. External fragmentation exists when

there is enough total memory space to satisfy a request but the available spaces are

not contiguous: storage is fragmented into a large number of small holes. This

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

