
89

fragmentation problem can be severe. In the worst case, we could have a block of free

(or wasted) memory between every two processes. If all these small pieces of memory

were in one big free block instead, we might be able to run several more processes.

Whether we are using the first-fit or best-fit strategy can affect the amount of

fragmentation. (First fit is better for some systems, whereas best fit is better for

others.) Another factor is which end of a free block is allocated. (Which is the leftover

piece the one on the top or the one on the bottom?) No matter which algorithm is

used, however, external fragmentation will be a problem.

Depending on the total amount of memory storage and the average process size,

external fragmentation may be a minor or a major problem. Statistical analysis of first

fit, for instance, reveals that, even with some optimization, given N allocated blocks,

another 0.5 N blocks will be lost to fragmentation. That is, one-third of memory may

be unusable! This property is known as the 50-percent rule.

Memory fragmentation can be internal as well as external. Consider a multiple-

partition allocation scheme with a hole of 18,464 bytes. Suppose that the next process

requests 18,462 bytes. If we allocate exactly the requested block, we are left with a

hole of 2 bytes. The overhead to keep track of this hole will be substantially larger

than the hole itself. The general approach to avoiding this problem is to break the

physical memory into fixed-sized blocks and allocate memory in units based on block

size. With this approach, the memory allocated to a process may be slightly larger

than the requested memory. The difference between these two numbers is internal

fragmentation unused memory that is internal to a partition.

One solution to the problem of external fragmentation is compaction. The goal

is to shuffle the memory contents so as to place all free memory together in one large

block. Compaction is not always possible, however. If relocation is static and is done

at assembly or load time, compaction cannot be done. It is possible only if relocation

is dynamic and is done at execution time. If addresses are relocated dynamically,

relocation requires only moving the program and data and then changing the base

register to reflect the new base address. When compaction is possible, we must

determine its cost. The simplest compaction algorithm is to move all processes toward

one end of memory; all holes move in the other direction, producing one large hole of

available memory. This scheme can be expensive.

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

90

Another possible solution to the external-fragmentation problem is to permit the

logical address space of the processes to be noncontiguous, thus allowing a process to

be allocated physical memory wherever such memory is available. Two

complementary techniques achieve this solution: segmentation and paging. These

techniques can also be combined.

Fragmentation is a general problem in computing that can occur wherever we

must manage blocks of data. We discuss the topic further in the storage management

chapters.

7.4. Segmentation

As we’ve already seen, the user’s view of memory is not the same as the actual

physical memory. This is equally true of the programmer’s view of memory. Indeed,

dealing with memory in terms of its physical properties is inconvenient to both the

operating system and the programmer. What if the hardware could provide a memory

mechanism that mapped the programmer’s view to the actual physical memory? The

system would have more freedom to manage memory, while the programmer would

have a more natural programming environment. Segmentation provides such a

mechanism.

7.4.1. Basic Method

Do programmers think of memory as a linear array of bytes, some containing

instructions and others containing data? Most programmers would say ―no.‖ Rather,

they prefer to view memory as a collection of variable-sized segments, with no

necessary ordering among the segments (Figure 7.7).

When writing a program, a programmer thinks of it as a main program with a set

of methods, procedures, or functions. It may also include various data structures:

objects, arrays, stacks, variables, and so on. Each of these modules or data elements is

referred to by name. The programmer talks about ―the stack,‖ ―the math library,‖ and

―the main program‖ without caring what addresses in memory these elements occupy.

She is not concerned with whether the stack is stored before or after the Sqrt()

function. Segments vary in length, and the length of each is intrinsically defined by its

purpose in the program. Elements within a segment are identified by their offset from

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

91

the beginning of the segment: the first statement of the program, the seventh stack

frame entry in the stack, the fifth instruction of the Sqrt(), and so on.

Segmentation is a memory-management scheme that supports this programmer

view of memory. A logical address space is a collection of segments.

Figure ‎7-7 Programmer’s view of a program

Each segment has a name and a length. The addresses specify both the

segment name and the offset within the segment. The programmer therefore specifies

each address by two quantities: a segment name and an offset. For simplicity of

implementation, segments are numbered and are referred to by a segment number,

rather than by a segment name. Thus, a logical address consists of a two tuple:

<segment-number, offset>.

Normally, when a program is compiled, the compiler automatically constructs

segments reflecting the input program. A C compiler might create separate segments

for the following:

1. The code

2. Global variables

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

92

3. The heap, from which memory is allocated

4. The stacks used by each thread

5. The standard C library

Libraries that are linked in during compile time might be assigned separate

segments. The loader would take all these segments and assign them segment

numbers.

7.4.2. Segmentation Hardware

Although the programmer can now refer to objects in the program by a two-

dimensional address, the actual physical memory is still, of course, a one dimensional

sequence of bytes. Thus, we must define an implementation to map two-dimensional

user-defined addresses into one-dimensional physical addresses. This mapping is

effected by a segment table. Each entry in the segment table has a segment base and

a segment limit. The segment base contains the starting physical address where the

segment resides in memory, and the segment limit specifies the length of the segment.

The use of a segment table is illustrated in Figure 7.8. A logical address consists

of two parts: a segment number, s, and an offset into that segment, d. The segment

number is used as an index to the segment table. The offset d of the logical address

must be between 0 and the segment limit. If it is not, we trap to the operating system

(logical addressing attempt beyond end of segment). When an offset is legal, it is

added to the segment base to produce the address in physical memory of the desired

byte. The segment table is thus essentially an array of base limit register pairs.

As an example, consider the situation shown in Figure 7.9. We have five

segments numbered from 0 through 4. The segments are stored in physical memory as

shown. The segment table has a separate entry for each segment, giving the beginning

address of the segment in physical memory (or base) and the length of that segment

(or limit). For example, segment 2 is 400 bytes long and begins at location 4300.

Thus, a reference to byte 53 of segment 2 is mapped onto location 4300 + 53 = 4353.

A reference to segment 3, byte 852, is mapped to 3200 (the base of segment 3) + 852

= 4052. A reference to byte 1222 of segment 0 would result in a trap to the operating

system, as this segment is only 1,000 bytes long.

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

