
93

Figure ‎7-8 Paging hardware

Figure ‎7-9 Example of segmentation

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

94

7.5. Paging

Segmentation permits the physical address space of a process to be

noncontiguous. Paging is another memory-management scheme that offers this

advantage. However, paging avoids external fragmentation and the need for

compaction, whereas segmentation does not. It also solves the considerable problem

of fitting memory chunks of varying sizes onto the backing store. Most memory-

management schemes used before the introduction of paging suffered from this

problem. The problem arises because, when code fragments or data residing in main

memory need to be swapped out, space must be found on the backing store. The

backing store has the same fragmentation problems discussed in connection with main

memory, but access is much slower, so compaction is impossible. Because of its

advantages over earlier methods, paging in its various forms is used in most operating

systems, from those for mainframes through those for smartphones. Paging is

implemented through cooperation between the operating system and the computer

hardware.

7.5.1. Basic Method

The basic method for implementing paging involves breaking physical memory

into fixed-sized blocks called frames and breaking logical memory into blocks of the

same size called pages. When a process is to be executed, its pages are loaded into

any available memory frames from their source (a file system or the backing store).

The backing store is divided into fixed-sized blocks that are the same size as the

memory frames or clusters of multiple frames. This rather simple idea has great

functionality and wide ramifications. For example, the logical address space is now

totally separate from the physical address space, so a process can have a logical 64-bit

address space even though the system has less than 264 bytes of physical memory.

The hardware support for paging is illustrated in Figure 7.10. Every address

generated by the CPU is divided into two parts: a page number (p) and a page offset

(d). The page number issued as an index into a page table. The page table contains

the base address of each page in physical memory. This base address is combined

with the page offset to define the physical memory address that is sent to the memory

unit. The paging model of memory is shown in Figure 7.11.

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

95

Figure ‎7-10 Paging hardware

Figure ‎7-11 Paging model of logical and physical memory

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

96

The page size (like the frame size) is defined by the hardware. The size of a

page is a power of 2, varying between 512 bytes and 1 GB per page, depending on the

computer architecture. The selection of a power of 2 as a page size makes the

translation of a logical address into a page number and page offset particularly easy. If

the size of the logical address space is 2m, and a page size is 2n bytes, then the high-

order m− n bits of a logical address designate the page number, and the n low-order

bits designate the page offset. Thus, the logical address is as follows:

where p is an index into the page table and d is the displacement within the page. As a

concrete (although minuscule) example, consider the memory in Figure 7.12. Here, in

the logical address, n= 2 and m = 4. Using a page size of 4 bytes and a physical

memory of 32 bytes (8 pages), we show how the programmer’s view of memory can

be mapped into physical memory. Logical address 0 is page 0, offset 0. Indexing into

the page table, we find that page 0 is in frame 5. Thus, logical address 0 maps to

physical address 20 [= (5 × 4) + 0]. Logical address 3 (page 0, offset 3) maps to

physical address 23 [= (5 × 4) + 3]. Logical address 4 is page 1, offset 0; according to

the page table, page 1 is mapped to frame 6. Thus, logical address 4 maps to physical

address 24 [= (6 × 4) + 0]. Logical address 13 maps to physical address 9.

You may have noticed that paging itself is a form of dynamic relocation.

Every logical address is bound by the paging hardware to some physical address.

Using paging is similar to using a table of base (or relocation) registers, one for each

frame of memory. When we use a paging scheme, we have no external fragmentation:

any free frame can be allocated to a process that needs it. However, we may have

some internal fragmentation. Notice that frames are allocated as units. If the memory

requirements of a process do not happen to coincide with page boundaries, the last

frame allocated may not be completely full. For example, if page size is 2,048 bytes, a

process of 72,766 bytes will need 35 pages plus 1,086 bytes. It will be allocated 36

frames, resulting in internal fragmentation of 2,048 − 1,086 = 962 bytes. In the worst

case, a process would need n pages plus 1 byte. It would be allocated n + 1 frames,

resulting in internal fragmentation of almost an entire frame.

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

