
97

Figure ‎7-12 Paging example for a 32-byte memory with 4-byte pages

If process size is independent of page size, we expect internal fragmentation to

average one-half page per process. This consideration suggests that small page sizes

are desirable. However, overhead is involved in each page-table entry, and this

overhead is reduced as the size of the pages increases. Also, disk I/O is more efficient

when the amount data being transferred is larger. Generally, page sizes have grown

over time as processes, data sets, and main memory have become larger. Today, pages

typically are between 4 KB and 8 KB in size, and some systems support even larger

page sizes. Some CPUs and kernels even support multiple page sizes. For instance,

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

98

Solaris uses page sizes of 8 KB and 4 MB, depending on the data stored by the pages.

Researchers are now developing support for variable on-the-fly page size.

Frequently, on a 32-bit CPU, each page-table entry is 4 bytes long, but that

size can vary as well.A32-bit entry can point to one of 232 physical page frames. If

frame size is 4 KB (212), then a system with 4-byte entries can address 244 bytes (or

16 TB) of physical memory. We should note here that the size of physical memory in

a paged memory system is different from the maximum logical size of a process. As

we further explore paging, we introduce other information that must be kept in the

page-table entries. That information reduces the number of bits available to address

page frames. Thus, a system with 32-bit page-table entries may address less physical

memory than the possible maximum.A32-bit CPU uses 32-bit addresses, meaning that

a given process space can only be 232 bytes (4 TB). Therefore, paging lets us use

physical memory that is larger than what can be addressed by the CPU’s address

pointer length.

When a process arrives in the system to be executed, its size, expressed in

pages, is examined. Each page of the process needs one frame. Thus, if the process

requires n pages, at least n frames must be available in memory. If n frames are

available, they are allocated to this arriving process. The first page of the process is

loaded into one of the allocated frames, and the frame number is put in the page table

for this process. The next page is loaded into another frame, its frame number is put

into the page table, and so on (Figure 7.13).

An important aspect of paging is the clear separation between the

programmer’s view of memory and the actual physical memory. The programmer

views memory as one single space, containing only this one program. In fact, the user

program is scattered throughout physical memory, which also holds other programs.

The difference between the programmer’s view of memory and the actual physical

memory is reconciled by the address-translation hardware. The logical addresses are

translated into physical addresses. This mapping is hidden from the programmer and

is controlled by the operating system. Notice that the user process by definition is

unable to access memory it does not own. It has no way of addressing memory

outside of its page table, and the table includes only those pages that the process

owns.

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

99

Since the operating system is managing physical memory, it must be aware of

the allocation details of physical memory which frames are allocated, which frames

are available, how many total frames there are, and so on. This information is

generally kept in a data structure called a frame table. The frame table has one entry

for each physical page frame, indicating whether the latter is free or allocated and, if it

is allocated, to which page of which process or processes.

In addition, the operating system must be aware that user processes operate in

user space, and all logical addresses must be mapped to produce physical addresses. If

a user makes a system call (to do I/O, for example) and provides an address as a

parameter (a buffer, for instance), that address must be mapped to produce the correct

physical address. The operating system maintains a copy of the page table for each

process, just as it maintains a copy of the instruction counter and register contents.

This copy is used to translate logical addresses to physical addresses whenever the

operating system must map a logical address to a physical address manually. It is also

used by the CPU dispatcher to define the hardware page table when a process is to be

allocated the CPU. Paging therefore increases the context-switch time.

Figure ‎7-13 Free frames (a) before allocation and (b) after allocation

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

100

7.5.2. Hardware Support

Each operating system has its own methods for storing page tables. Some

allocate a page table for each process. A pointer to the page table is stored with the

other register values (like the instruction counter) in the process control block. When

the dispatcher is told to start a process, it must reload the user registers and define the

correct hardware page-table values from the stored user page table. Other operating

systems provide one or at most a few page tables, which decreases the overhead

involved when processes are context-switched.

The hardware implementation of the page table can be done in several ways. In

the simplest case, the page table is implemented as a set of dedicated registers. These

registers should be built with very high-speed logic to make the paging-address

translation efficient. Every access to memory must go through the paging map, so

efficiency is a major consideration. The CPU dispatcher reloads these registers, just as

it reloads the other registers. Instructions to load or modify the page-table registers

are, of course, privileged, so that only the operating system can change the memory

map. The DEC PDP-11 is an example of such an architecture. The address consists of

16 bits, and the page size is 8 KB. The page table thus consists of eight entries that are

kept in fast registers.

The use of registers for the page table is satisfactory if the page table is

reasonably small (for example, 256 entries). Most contemporary computers, however,

allow the page table to be very large (for example, 1 million entries). For these

machines, the use of fast registers to implement the page table is not feasible. Rather,

the page table is kept in main memory, and a page-table base register (PTBR) points

to the page table. Changing page tables requires changing only this one register,

substantially reducing context-switch time.

The problem with this approach is the time required to access a user memory

location. If we want to access location i, we must first index into the page table, using

the value in the PTBR offset by the page number for i. This task requires a memory

access. It provides us with the frame number, which is combined with the page offset

to produce the actual address. We can then access the desired place in memory. With

this scheme, two memory accesses are needed to access a byte (one for the page-table

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

