
 Lecturer: Ameen Abdulzahra
Architectural and Assembly Language Second Stage

Lecture Four

The processor and Memory

INPUT/OUTPUT

Input / Output (I/O) devices provide the means by which the computer

system can interact with the outside world. Computers use I/O devices

(also called peripheral devices) for two major purposes:

1. To communicate with the outside world and,

2. Store data.

Devices that are used to communicate like, printer, keyboard, modem,

Devices that are used to store data like disk drive. I/O devices are

connected to the system bus through I/O controller (interface) – which

acts as interface between the system bus and I/O devices.

There are two main reasons for using I/O controllers

1. I/O devices exhibit different characteristics and if these devices

are connected directly, the CPU would have to understand and

respond appropriately to each I/O device. This would cause the

CPU to spend a lot of time interacting with I/O devices and spend

less time executing user programs.

2. The amount of electrical power used to send signals on the

system bus is very low. This means that the cable connecting the

I/O device has to be very short (a few centimeters at most). I/O

controllers typically contain driver hardware to send current over

long cable that connects I/O devices. See Figure5.

 Lecturer: Ameen Abdulzahra
Architectural and Assembly Language Second Stage

Figure: Block diagram of a generic I/O device interface.

Addressing Data in Memory

Depending on the model, the processor can access one or more bytes of

memory at a time. Consider the Hexa value (0529H) which requires two

bytes. It consist of high order (most significant) byte 05 and a low order

(least significant) byte 29. The processor store the data in memory in

reverse byte sequence i.e. the low order byte in the low memory address

and the high order byte in the high memory address. For example, the

processor transfer the value 0529H from a register into memory addresses

04A26 H and 04A27H like this:

 Lecturer: Ameen Abdulzahra
Architectural and Assembly Language Second Stage

Memory addressing schemes:

1. An Absolute Address, such as 04A26H, is a 20 bit value that

directly references a specific location.

2. A Segment Offset Address combines the starting address of a

segment with an offset value.

Segment and offset:

Segments are special area defined in a program for containing the code,

the data, and the stack. Segment Offset within a program, all memory

locations within a segment are relative to the segment starting address.

The distance in bytes from the segment address to another location within

the segment is expressed as an offset (or displacement). A segment is an

area of memory that includes up to 64K bytes as shown in the following

figures. The offset address is always added to the segment starting

address to locate the data. All real mode memory addresses must consist

of a segment address plus an offset address. –Segment address defines the

beginning address of any 64K-byte memory segment offset address

selects any location within the64K byte memory segment.

 Lecturer: Ameen Abdulzahra
Architectural and Assembly Language Second Stage

The real mode memory-addressing scheme, using a segment address plus

an offset. Assembly Language Program consists of three segments:

 Code segment: contains the program code (instructions).

 Data segment: used to store data (information) to be processed by

the program.

 Stack segment: used to store information temporarily.

Execution Unit and Bus Interface Unit

The processor is partitioned into two logical units as shown in figure:

1. Execution Unit (EU) to execute instruction and perform arithmetic and

logical operations. The EU contains ALU, CU and number of registers.

2. Bus Interface Unit (BIU) to deliver the instruction and data to EU. The

most important function of BIU is to manage the bus control unit,

segment registers and instruction queue.

 Lecturer: Ameen Abdulzahra
Architectural and Assembly Language Second Stage

Another function of the BIU is to provide access to instructions, because

the instructions for a program that is executing are kept in memory, the

BIU must access instruction from memory and place them in an

instruction queue, which varies in size depending on the processor. This

feature enables the BIU to look ahead and prefetch instructions, so that

there is always a queue of instructions ready to execute. The EU and BIU

work in parallel, The top instruction is the currently executable one, and

while the EU is occupied executing an instruction, the BIU fetch another

instruction from memory. This fetching overlaps with execution and

speeds up processing.

